Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1133, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326356

RESUMO

In recent decades, more than 100,000 scientific articles have been devoted to the development of electrode materials for supercapacitors and batteries. However, there is still intense debate surrounding the criteria for determining the electrochemical behavior involved in Faradaic reactions, as the issue is often complicated by the electrochemical signals produced by various electrode materials and their different physicochemical properties. The difficulty lies in the inability to determine which electrode type (battery vs. pseudocapacitor) these materials belong to via simple binary classification. To overcome this difficulty, we apply supervised machine learning for image classification to electrochemical shape analysis (over 5500 Cyclic Voltammetry curves and 2900 Galvanostatic Charge-Discharge curves), with the predicted confidence percentage reflecting the shape trend of the curve and thus defined as a manufacturer. It's called "capacitive tendency". This predictor not only transcends the limitations of human-based classification but also provides statistical trends regarding electrochemical behavior. Of note, and of particular importance to the electrochemical energy storage community, which publishes over a hundred articles per week, we have created an online tool to easily categorize their data.

2.
Front Chem ; 10: 873783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494628

RESUMO

The broader development of the electric car for tomorrow's mobility requires the emergence of new fast-charging negative electrode materials to replace graphite in Li-ion batteries. In this area, the design of new compounds using innovative approaches could be the key to discovering new negative electrode materials that allow for faster charging and discharging processes. Here, we present a partially substituted AgNbO3 perovskite material by introducing lanthanum in the A-site. By creating two vacancies for every lanthanum introduced in the structure, the resulting general formula becomes Ag1-3xLax□2xNbO3 (with x ≤ 0.20 and where □ is a A-site vacancy), allowing the insertion of lithium ions. The highly substituted Ag0.40La0.20□0.40NbO3 oxide shows a specific capacity of 40 mAh.g-1 at a low sweep rate (0.1 mV s-1). Interestingly, Ag0.70La0.10□0.20NbO3 retains 64% of its capacity at a very high sweep rate (50 mV s-1) and about 95% after 800 cycles. Ex situ 7Li MAS NMR experiments confirmed the insertion of lithium ions in these materials. A kinetic analysis of Ag1-3xLax□2xNbO3 underlines the ability to store charge without solid-state ion-diffusion limitations. Furthermore, in situ XRD indicates no structural modification of the compound when accommodating lithium ions, which can be considered as zero-strain material. This finding explains the interesting capacity retention observed after 800 cycles. This paper thus demonstrates an alternative approach to traditional insertion materials and identifies a different way to explore not-so common electrode materials for fast energy storage application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...