Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(14): 18470-18479, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114026

RESUMO

With the growing complexity of astronomical instruments devoted to interferometry, such as MATISSE (a 4 telescope beam combiner) or FIRST (a 9 sub-apertures beam combiner), and the rebirth of space projects such as LIFE (a mid-infrared interferometer), integrated optics devices can be an interesting and complementary approach for beam combination of a large number of apertures. Moreover, one of the approaches for beam combination is pairwise combination of the inputs (either from individual telescopes or from aperture masking on a single telescope), which scales as N(N-1)/2 for an N input system. Astrophotonics devices are attractive to reduce mass and system complexity, while achieving all the beam combination in a single chip, even for a high number of inputs. The aim of this work is to develop a compact photonic device for astronomical applications and demonstrate a proof-of-concept of a spectro-interferometer. In this paper ultrafast laser inscription is used to fabricate three arrayed waveguide gratings (AWGs) stacked vertically. This arrangement enables spectral dispersion and interferometry to be measured simultaneously. Individual AWGs were designed for operation at 633 nm, and demonstrated at 633nm and 830nm. A scan between 790 and 830nm was also achieved to study the wavelength behavior of the AWG. Using a segmented mirror, light at 633nm or 830nm was injected simultaneously into three AWGs layered 40 µm apart, showing analogous behavior for all three layers and no unexpected crosstalk. Finally the three outputs were vertically combined to obtain interference fringes, showing the feasibility of spectro-interferometry and opening the way for compact astrophotonic devices devoted to phase closure studies, used in astronomy to reduce the effect of atmospheric turbulence.

2.
Opt Express ; 25(22): 27341-27369, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092210

RESUMO

The next generation of extremely large telescopes (ELT), with diameters up to 39 meters, is planned to begin operation in the next decade and promises new challenges in the development of instruments since the instrument size increases in proportion to the telescope diameter D, and the cost as D2 or faster. The growing field of astrophotonics (the use of photonic technologies in astronomy) could solve this problem by allowing mass production of fully integrated and robust instruments combining various optical functions, with the potential to reduce the size, complexity and cost of instruments. Astrophotonics allows for a broad range of new optical functions, with applications ranging from sky background filtering, high spatial and spectral resolution imaging and spectroscopy. In this paper, we want to provide astronomers with valuable keys to understand how photonics solutions can be implemented (or not) according to the foreseen applications. The paper introduces first key concepts linked to the characteristics of photonics technologies, placed in the framework of astronomy and spectroscopy. We then describe a series of merit criteria that help us determine the potential of a given micro-spectrograph technology for astronomy applications, and then take an inventory of the recent developments in integrated micro-spectrographs with potential for astronomy. We finally compare their performance, to finally draw a map of typical science requirements and pin the identified integrated technologies on it. We finally emphasize the necessary developments that must support micro-spectrograph in the coming years.

3.
Opt Express ; 25(7): 8386-8397, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380951

RESUMO

Guided optics spectrometers can be essentially classified into two main families: based on Fourier transform or dispersion. In the first case, an interferogram generated inside an optical waveguide and containing the spectral information is sampled using spatially distributed nanodetectors. These scatter quasi-non-perturbingly light into the detector that is in contact with the waveguide, helping to reconstruct the stationary wave. A dedicated FFT processing is needed in order to recover the spectrum with high resolution but limited spectral range. Another way is to directly disperse the different wavelengths to different pixels, either introducing differential optical path in the same propagation plane (multiple Mach-Zehnder interferometers or Arrayed Waveguides Gratings), or using a periodic structure to perpendicularly extract the optical signal confined in a waveguide (photonic crystals or surface gratings), and by means of a relay optics, generate the spectrum on the Fourier plane of the lens, where the detector is placed. Following this second approach, we present a laser-fabricated high-resolution compact dispersive spectro-interferometer (R>2500, 30nm spectral range at λ = 1560nm), using four parallel waveguides that can provide up to three non-redundant interferometric combinations. The device is based on guided optics technology embedded in bulk optical glass. Ultrafast laser photoinscription with 3D laser index engineering in bulk chalcogenide Gallium Lanthanium Sulfide glass is utilized to fabricate large mode area waveguides in an evanescently-coupled hexagonal multicore array configuration, followed by subsequent realization of nanoscaled scattering centers via one dimensional nanovoids across the waveguide, written in a non-diffractive Bessel configuration. A simple relay optics, with limited optical aberrations, reimages the diffracted signal on the focal plane array, leading to a robust, easy to align instrument.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...