Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 86(1): 9-18, 2004 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-15007836

RESUMO

The supply of oxygen within three-dimensional tissue-engineered (TE) cartilage polymer constructs is mainly by diffusion. Oxygen consumption by cells results in gradients in the oxygen concentration. The aims of this study were, firstly, to identify the gradients within TE cartilage polymer constructs and, secondly, to predict the profiles during in vitro culture. A glass microelectrode system was adapted and used to penetrate cartilage and TE cartilaginous constructs, yielding reproducible measurements with high spatial resolution. Cartilage polymer constructs were cultured for up to 41 days in vitro. Oxygen concentrations, as low as 2-5%, were measured within the center of these constructs. At the beginning of in vitro culture, the oxygen gradients were steeper in TE constructs in comparison to native tissue. Nevertheless, during the course of culture, oxygen concentrations approached the values measured in native tissue. A mathematical model was developed which yields oxygen profiles within cartilage explants and TE constructs. Model input parameters were assessed, including the diffusion coefficient of cartilage (2.2 x 10(-9)) + (0.4 x 10(-9) m(2) s(-1)), 70% of the diffusion coefficient of water and the diffusion coefficient of constructs (3.8 x 10(-10) m(2) s(-1)). The model confirmed that chondrocytes in polymer constructs cultured for 27 days have low oxygen requirements (0.8 x 10(-19) mol m(-3) s(-1)), even lower than chondrocytes in native cartilage. The ability to measure and predict local oxygen tensions offers new opportunities to obtain more insight in the relation between oxygen tension and chondrogenesis.


Assuntos
Condrócitos/citologia , Condrócitos/metabolismo , Modelos Biológicos , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Poliésteres/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Bovinos , Técnicas de Cultura de Células/métodos , Divisão Celular/fisiologia , Células Cultivadas , Condrogênese/fisiologia , Difusão , Teste de Materiais , Modelos Químicos , Oxigênio/química , Distribuição Tecidual
2.
Biotechnol Bioeng ; 75(1): 13-24, 2001 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-11536122

RESUMO

Oxygen limitation in solid-state fermentation (SSF) has been the topic of modeling studies, but thus far, there has been no experimental elucidation on oxygen-transfer limitation at the particle level. Therefore, intra-particle oxygen transfer was experimentally studied in cultures of Rhizopus oligosporus grown on the surface of solid, nutritionally defined, glucose and starch media. The fungal mat consisted of two layers--an upper layer with sparse aerial hyphae and gas-filled interstitial pores, and a dense bottom layer with liquid-filled pores. During the course of cultivation ethanol was detected in the medium indicating that oxygen was depleted in part of the fungal mat. Direct measurement of the oxygen concentrations in the fungal mat during cultivation, using oxygen microelectrodes, showed no oxygen depletion in the upper aerial layer, but revealed development of steep oxygen concentration gradients in the wet bottom layer. Initially, the fungal mat was fully oxygenated, but after 36.5 hours oxygen was undetectable at 100 microm below the gas-liquid interface. This was consistent with the calculated oxygen penetration depth using a reaction-diffusion model. Comparison of the overall oxygen consumption rate from the gas phase to the oxygen flux at the gas-liquid interface showed that oxygen consumption of the microorganisms occurred mainly in the wet part of the fungal mat. The contribution of the aerial hyphae to overall oxygen consumption was negligible. It can be concluded that optimal oxygen transfer in SSF depends on the available interfacial gas-liquid surface area and the thickness of the wet fungal layer. It is suggested that the moisture content of the matrix affects both parameters and, therefore, plays an important role in optimizing oxygen transfer in SSF cultures.


Assuntos
Fermentação/fisiologia , Oxigênio/farmacocinética , Rhizopus/metabolismo , Aerobiose , Biomassa , Meios de Cultura/farmacologia , Difusão , Etanol/metabolismo , Glucose/farmacologia , Hifas/metabolismo , Microeletrodos , Consumo de Oxigênio/fisiologia , Rhizopus/crescimento & desenvolvimento , Amido/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...