Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(3): e13581, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36873479

RESUMO

First of all, this article aimed to evidence the role of a modified printer developed for continuous carbon fibre reinforced PolyAmide (cCF/PA6-I) together with the use of a fully open slicing step on the printing quality and the longitudinal/transverse tensile and in-plane shear properties. A comprehensive assessment of the microstructure and properties with a similar material (cCF/PA6-I), but produced with a commercial printer (i.e., Markforged® MarkTwo) has been achieved. Our customised printer and the open slicer used have made possible to better control the print conditions (i.e., layer height and distance between filaments), to reduce the porosity from more than 10% to about 2% and improve the mechanical properties. Moreover, the understanding of the behaviour of these 3D printed composites with wide-ranging external temperatures is mandatory for future use in a severe environment and/or development of new thermally active 4D printed composites. The 3D printed cCF/PA6-I composites have been then thermomechanically characterised along different printing directions (0, 90 and ± 45°) from -55 to +100 °C. Unlike the longitudinal properties that hardly change with temperature, the transverse and in-plane shear stiffness and strength of these 3D printed composites were particularly sensitive to temperature variations, with decreases of 25-30% and 30-55%, respectively. This was due to the high sensitivity of the polymer matrix, the fibre/matrix and interfilament interfaces when the composites were loaded along those directions, because damages induced by internal thermal stresses. Fractography has also been carried out to reveal damage mechanisms.

2.
Sci Rep ; 6: 18105, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26726792

RESUMO

Pine cones are well known natural actuators that can move their scales upon humidity gradient. The mechanism manifests itself through a displacement easily observable by the naked eye, but coupled with stress generation. In ancient Egypt, wooden wedges were used to break soft blocks of stone by the generated swelling stress. The purpose of the present study is to evaluate the ability of pine cone scales to generate forces while being wetted. In our experiments, a blocking force of around 3N is measured depending on the position on the pine cone where the scales are extracted. A fairly good agreement is obtained when theoretical results based on bimetallic strip systems are compared with experimental data, even if overestimation is observed arising from the input data considered for dry tissues. Inspired by a simplified pine cone microstructure, a biocomposite analogue is manufactured and tested. Although an adequate blocking force can be generated, it has a lower value compared to natural pine cones which benefit from optimized swelling tissue content and interfacial bond strength between them. This study provides new insights to understand the generation of force by pine cones as well as to develop novel biocomposite functionalities.


Assuntos
Fenômenos Mecânicos , Modelos Teóricos , Pinus/anatomia & histologia , Pinus/fisiologia
3.
J Pharmacol Exp Ther ; 287(3): 1038-47, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9864290

RESUMO

We have investigated the adaptive changes of the human central cannabinoid receptor (CB1) stably expressed in Chinese hamster ovary cells (CHO-CB1), after agonist (CP 55,940) or selective CB1 inverse agonist (SR 141716) treatment. CB1 receptor density and affinity constant as measured by binding assays with both tritiated ligands remained essentially unchanged after varying period exposure of CHO-CB1 cells (from 30 min to 72 hr) to saturating concentrations of CP 55,940 or SR 141716. However, using a C-myc-tagged version of the CB1 receptor, FACS analysis and confocal microscopy studies on CB1 expression indicated that the agonist promoted a disappearance of cell surface receptor although inverse agonist increased its cell surface density. Taken together these results suggest that 1) agonist induces internalization of the receptor into a cellular compartment that would be still accessible to both the hydrophobic ligands CP 55,940 or SR 141716; 2) inverse-agonist promotes externalization of the receptor from an intracellular preexisting pool to the cell surface. In parallel, we also investigated the associated effects of CP 55,940 and SR 141716 on CB1 receptor-coupled second messengers. We showed that preexposure of cells to CP 55,940 induced a rapid desensitization of the CB1 to the agonist response. The ability of CP 55,940 to inhibit the forskolin-stimulated adenylyl cyclase and to activate the mitogen-activated protein kinase activity was dramatically reduced. By striking contrast, SR 141716 pretreatment of CHO-CB1 cells not only had no significant effect on the potency of CP 55,940 to inhibit the forskolin-stimulated adenylyl cyclase but also induced a significant enhancement of the CP 55,940 ability to stimulate the mitogen-activated protein kinase activity. These results suggest that the modulation of the number of cell surface receptor could lead to functional desensitization or sensitization of the CB1 receptors.


Assuntos
Cicloexanóis/farmacologia , Receptores de Droga/efeitos dos fármacos , Animais , Células CHO , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Canabinoides/antagonistas & inibidores , Membrana Celular/efeitos dos fármacos , Cricetinae , AMP Cíclico/metabolismo , Humanos , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptores de Canabinoides , Receptores de Droga/biossíntese , Receptores de Droga/fisiologia , Rimonabanto , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...