Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 81(3): 505-20, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24507188

RESUMO

We present a method to label and trace the lineage of multiple neural progenitors simultaneously in vertebrate animals via multiaddressable genome-integrative color (MAGIC) markers. We achieve permanent expression of combinatorial labels from new Brainbow transgenes introduced in embryonic neural progenitors with electroporation of transposon vectors. In the mouse forebrain and chicken spinal cord, this approach allows us to track neural progenitor's descent during pre- and postnatal neurogenesis or perinatal gliogenesis in long-term experiments. Color labels delineate cytoarchitecture, resolve spatially intermixed clones, and specify the lineage of astroglial subtypes and adult neural stem cells. Combining colors and subcellular locations provides an expanded marker palette to individualize clones. We show that this approach is also applicable to modulate specific signaling pathways in a mosaic manner while color-coding the status of individual cells regarding induced molecular perturbations. This method opens new avenues for clonal and functional analysis in varied experimental models and contexts.


Assuntos
Encéfalo/citologia , Linhagem da Célula/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Medula Espinal/citologia , Células-Tronco/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Embrião de Galinha , Colorimetria , Eletroporação , Embrião de Mamíferos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Neurogênese/fisiologia , Medula Espinal/embriologia , Células-Tronco/citologia , Fatores de Tempo , Transposases/fisiologia
2.
J Neurophysiol ; 104(4): 1978-96, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20668279

RESUMO

Deep dorsal horn relay neurons (dDHNs) of the spinal cord are known to exhibit multiple firing patterns under the control of local metabotropic neuromodulation: tonic firing, plateau potential, and spontaneous oscillations. This work investigates the role of interactions between voltage-gated channels and the occurrence of different firing patterns and then correlates these two phenomena with their functional role in sensory information processing. We designed a conductance-based model using the NEURON software package, which successfully reproduced the classical features of plateau in dDHNs, including a wind-up of the neuronal response after repetitive stimulation. This modeling approach allowed us to systematically test the impact of conductance interactions on the firing patterns. We found that the expression of multiple firing patterns can be reproduced by changes in the balance between two currents (L-type calcium and potassium inward rectifier conductances). By investigating a possible generalization of the firing state switch, we found that the switch can also occur by varying the balance of any hyperpolarizing and depolarizing conductances. This result extends the control of the firing switch to neuromodulators or to network effects such as synaptic inhibition. We observed that the switch between the different firing patterns occurs as a continuous function in the model, revealing a particular intermediate state called the accelerating mode. To characterize the functional effect of a firing switch on information transfer, we used correlation analysis between a model of peripheral nociceptive afference and the dDHN model. The simulation results indicate that the accelerating mode was the optimal firing state for information transfer.


Assuntos
Potenciais de Ação/fisiologia , Biologia Computacional/métodos , Modelos Neurológicos , Células do Corno Posterior/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Condutividade Elétrica , Haplorrinos , Software , Medula Espinal/citologia , Medula Espinal/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
3.
J Physiol Paris ; 98(4-6): 540-58, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16289755

RESUMO

We use dynamic clamp to construct "hybrid" thalamic circuits by connecting a biological neuron in situ to silicon- or software-generated "neurons" through artificial synapses. The purpose is to explore cellular sensory gating mechanisms that regulate the transfer efficiency of signals during different sleep-wake states. Hybrid technology is applied in vitro to different paradigms such as: (1) simulating interactions between biological thalamocortical neurons, artificial reticular thalamic inhibitory interneurons and a simulated sensory input, (2) grafting an artificial sensory input to a wholly biological thalamic network that generates spontaneous sleep-like oscillations, (3) injecting in thalamocortical neurons a background synaptic bombardment mimicking the activity of corticothalamic inputs. We show that the graded control of the strength of intrathalamic inhibition, combined with the membrane polarization and the fluctuating synaptic noise in thalamocortical neurons, is able to govern functional shifts between different input/output transmission states of the thalamic gate.


Assuntos
Potenciais de Ação/fisiologia , Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios Aferentes/fisiologia , Transmissão Sináptica/fisiologia , Tálamo/fisiologia , Animais , Biorretroalimentação Psicológica/fisiologia , Córtex Cerebral/fisiologia , Pareamento Cromossômico/fisiologia , Simulação por Computador , Furões , Cobaias , Modelos Neurológicos , Neurotransmissores/fisiologia , Norepinefrina/farmacologia , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/fisiologia , Sono/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Fatores de Tempo , Vias Visuais/fisiologia , Vigília/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...