Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(4): e0522122, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37341591

RESUMO

We performed a descriptive analysis of group B Streptococcus (GBS) isolates responsible for maternal and fetal infectious diseases from 2004 to 2020 at the University Hospital of Tours, France. This represents 115 isolates, including 35 isolates responsible for early-onset disease (EOD), 48 isolates responsible for late-onset disease (LOD), and 32 isolates from maternal infections. Among the 32 isolates associated with maternal infection, 9 were isolated in the context of chorioamnionitis associated with in utero fetal death. Analysis of neonatal infection distribution over time highlighted the decrease in EOD since the early 2000s, while LOD incidence has remained relatively stable. All GBS isolates were analyzed by sequencing their CRISPR1 locus, which is an efficient way to determine the phylogenetic affiliation of strains, as it correlates with the lineages defined by multilocus sequence typing (MLST). Thus, the CRISPR1 typing method allowed us to assign a clonal complex (CC) to all isolates; among these isolates, CC17 was predominant (60/115, 52%), and the other main CCs, such as CC1 (19/115, 17%), CC10 (9/115, 8%), CC19 (8/115, 7%), and CC23 (15/115, 13%), were also identified. As expected, CC17 isolates (39/48, 81.3%) represented the majority of LOD isolates. Unexpectedly, we found mainly CC1 isolates (6/9) and no CC17 isolates that were responsible for in utero fetal death. Such a result highlights the possibility of a particular role of this CC in in utero infection, and further investigations should be conducted on a larger group of GBS isolated in a context of in utero fetal death. IMPORTANCE Group B Streptococcus is the leading bacterium responsible for maternal and neonatal infections worldwide, also involved in preterm birth, stillbirth, and fetal death. In this study, we determined the clonal complex of all GBS isolates responsible for neonatal diseases (early- and late-onset diseases) and maternal invasive infections, including chorioamnionitis associated with in utero fetal death. All GBS was isolated at the University Hospital of Tours from 2004 to 2020. We described the local group B Streptococcus epidemiology, which confirmed national and international data concerning neonatal disease incidence and clonal complex distribution. Indeed, neonatal diseases are mainly characterized by CC17 isolates, especially in late-onset disease. Interestingly, we identified mainly CC1 isolates responsible for in utero fetal death. CC1 could have a particular role in this context, and such a result should be confirmed on a larger group of GBS isolated from in utero fetal death.


Assuntos
Corioamnionite , Doenças Transmissíveis , Nascimento Prematuro , Infecções Estreptocócicas , Feminino , Gravidez , Recém-Nascido , Humanos , Tipagem de Sequências Multilocus , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Filogenia , Streptococcus agalactiae , Morte Fetal , Antibacterianos
2.
J Med Microbiol ; 72(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37335614

RESUMO

Introduction. Group B Streptococcus (GBS) remains the leading cause of bacterial neonatal infections worldwide, despite the spread of recommendations on vaginal screening and antibiotic prophylaxis.Hypothesis/Gap Statement. There is a need to evaluate the potential changes in GBS epidemiology over time following the introduction of such guidelines.Aim. Our aim was to perform a descriptive analysis of the epidemiological characteristics of GBS by conducting a long-term surveillance of strains isolated between 2000 and 2018, using molecular typing methods.Methodology. A total of 121 invasive strains, responsible for maternal infections (20 strains), fetal infections (8 strains) and neonatal infections (93 strains), were included in the study, representing all the invasive isolates during the period; in addition, 384 colonization strains isolated from vaginal or newborn samples were randomly selected. The 505 strains were characterized by capsular polysaccharide (CPS) type multiplex PCR assay and the clonal complex (CC) was assigned using a single nucleotide polymorphism PCR assay. Antibiotic susceptibility was also determined.Results. CPS types III (32.1 % of the strains), Ia (24.6 %) and V (19 %) were the most prevalent. The five main CCs observed were CC1 (26.3 % of the strains), CC17 (22.2 %), CC19 (16.2 %), CC23 (15.8 %) and CC10 (13.9 %). Neonatal invasive GBS diseases were predominantly due to CC17 isolates (46.3 % of the strains), which mainly express CPS type III (87.5 %), with a very high prevalence in late-onset diseases (76.2 %).Conclusion. Between 2000 and 2018, we observed a decrease in the proportion of CC1 strains, which mainly express CPS type V, and an increase in the proportion of CC23 strains, mainly expressing CPS type Ia. Conversely, there was no significant change in the proportion of strains resistant to macrolides, lincosamides or tetracyclines. The two molecular techniques used in our study provide almost as much information as classical serotyping and multilocus sequence typing, but are quicker, easy to perform, and avoid long sequencing and analysis steps.


Assuntos
Gestantes , Infecções Estreptocócicas , Humanos , Recém-Nascido , Feminino , Gravidez , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae , Sorotipagem , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase Multiplex
3.
Med Mycol ; 60(7)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35713494

RESUMO

Aspergillosis is pervasive in bird populations, especially those under human care. Its management can be critically impacted by exposure to high levels of conidia and by resistance to azole drugs. The fungal contamination in the environment of a Humboldt penguin (Spheniscus humboldti) group, housed in a French zoological park next to numerous large crop fields, was assessed through three serial sessions of surface sampling in nests, in 2018-20: all isolates were counted and characterized by sequencing. When identified as Aspergillus fumigatus, they were systematically screened for resistance mutations in the cyp51A gene and tested for minimal inhibitory concentrations (MICs) determination. At the same time, the clinical incidence of aspergillosis was evaluated in the penguin population by the means of systematic necropsy and mycological investigations. A microsatellite-based analysis tracked the circulation of A. fumigatus strains. Environmental investigations highlighted the substantial increase of the fungal load during the summer season (>12-fold vs. the other timepoints) and a large overrepresentation of species belonging to the Aspergillus section Fumigati, ranging from 22.7 to 94.6% relative prevalence. Only one cryptic species was detected (A. nishimurae), and one isolate exhibited G138S resistance mutation with elevated MICs. The overall incidence of aspergillosis was measured at ∼3.4% case-years, and mostly in juveniles. The analysis of microsatellite polymorphism revealed a high level of genetic diversity among A. fumigatus clinical isolates. In contrast, one environmental strain appeared largely overrepresented during the summer sampling session. In all, the rural location of the zoo did not influence the emergence of resistant strains.


Assuntos
Aspergilose , Spheniscidae , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/microbiologia , Aspergilose/veterinária , Aspergillus fumigatus , Azóis/farmacologia , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Humanos , Programas de Assistência Gerenciada , Testes de Sensibilidade Microbiana/veterinária , Mutação
4.
Front Microbiol ; 13: 828031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173702

RESUMO

Streptococci form a wide group of bacteria and are involved in both human and animal pathologies. Among pathogenic isolates, differences have been highlighted especially concerning their adaptation and virulence profiles. CRISPR-Cas systems have been identified in bacteria and many streptococci harbor one or more systems, particularly subtypes I-C, II-A, and III-A. Since the demonstration that CRISPR-Cas act as an adaptive immune system in Streptococcus thermophilus, a lactic bacteria, the diversity and role of CRISPR-Cas were extended to many germs and functions were enlarged. Among those, the genome editing tool based on the properties of Cas endonucleases is used worldwide, and the recent attribution of the Nobel Prize illustrates the importance of this tool in the scientific world. Another application is CRISPR loci analysis, which allows to easily characterize isolates in order to understand the interactions of bacteria with their environment and visualize species evolution. In this review, we focused on the distribution, diversity and roles of CRISPR-Cas systems in the main pathogenic streptococci.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...