Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 864576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663878

RESUMO

The foodborne pathogen, Listeria monocytogenes, (Lm), frequently undergoes selection pressure associated with the extensive use of disinfectants, such as quaternary ammonium compounds, which are widely used in food processing plants. The repeated exposure to sub-inhibitory biocide concentrations can induce increased tolerance to these compounds, but can also trigger the development of antibiotic resistance, and both increase the risk of food contamination and persistence in food production environments. Although the acquisition of genes can explain biocide tolerance, the genetic mechanisms underlying the adaptive cross-resistance to antibiotics remain unclear. We previously showed that repeated exposure to benzalkonium chloride (BC) and didecyldimethyl ammonium chloride (DDAC) led to reduced susceptibility to ciprofloxacin in Lm strains from diverse sources. Here, we compared the genomes of 16 biocide-adapted and 10 parental strains to identify the molecular mechanisms of fluoroquinolone cross-resistance. A core genome SNP analysis identified various mutations in the transcriptional regulator fepR (lmo2088) for 94% of the adapted strains and mutations in other effectors at a lower frequency. FepR is a local repressor of the MATE fluoroquinolone efflux pump FepA. The impact of the mutations on the structure and function of the protein was assessed by performing in silico prediction and protein homology modeling. Our results show that 75% of the missense mutations observed in fepR are located in the HTH domain of the protein, within the DNA interaction site. These mutations are predicted to reduce the activity of the regulator, leading to the overexpression of the efflux pump responsible for the ciprofloxacin-enhanced resistance.

2.
Pathogens ; 10(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670643

RESUMO

In this contribution, the antimicrobial susceptibility toward 11 antibiotics and four biocides of a panel of 205 Listeria monocytogenes (Lm) strains isolated from different ecological niches (i.e., food, animals and natural environment) was evaluated. The impact of exposure to biocides on the antibiotic susceptibilities of Lm was also investigated. Lm strains isolated from food exhibited overall a lower susceptibility (higher minimal inhibitory concentrations, MIC) for ammonium quaternary compounds (QACs) and peracetic acid (PAC) than strains isolated from animals and natural environments. Conversely, the ecological origins of Lm strains did not significantly affect their susceptibilities towards antibiotics. Interestingly, repeated exposure to QACs recurrently led to a decrease in susceptibility toward ciprofloxacin (CIP), a fluoroquinolone antibiotic, largely used in human medicine. Moreover, these lower levels of susceptibility to CIP remained stable in most Lm strains even after subcultures without biocide selection pressure, suggesting an adaptation involving modifications at the genetic level. Results underlined the ability of Lm to adapt to biocides, especially QACs, and the potential link between this adaptation and the selection of resistance toward critical antibiotics such as ciprofloxacin. These data support a potential role of the extensive use of QACs from "farm to fork" in the selection of biocide and antibiotic resistance in pathogenic bacteria such as Lm.

3.
Sci Rep ; 9(1): 12947, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506516

RESUMO

To guarantee food safety, a better deciphering of ecology and adaptation strategies of bacterial pathogens such as Salmonella in food environments is crucial. The role of food processing conditions such as cleaning and disinfection procedures on antimicrobial resistance emergence should especially be investigated. In this work, the prevalence and antimicrobial resistance of Salmonella and the microbial ecology of associated surfaces communities were investigated in a pig slaughterhouse before and after cleaning and disinfection procedures. Salmonella were detected in 67% of samples and isolates characterization revealed the presence of 15 PFGE-patterns belonging to five serotypes: S.4,5,12:i:-, Rissen, Typhimurium, Infantis and Derby. Resistance to ampicillin, sulfamethoxazole, tetracycline and/or chloramphenicol was detected depending on serotypes. 16S rRNA-based bacterial diversity analyses showed that Salmonella surface associated communities were highly dominated by the Moraxellaceae family with a clear site-specific composition suggesting a persistent colonization of the pig slaughterhouse. Cleaning and disinfection procedures did not lead to a modification of Salmonella susceptibility to antimicrobials in this short-term study but they tended to significantly reduce bacterial diversity and favored some genera such as Rothia and Psychrobacter. Such data participate to the construction of a comprehensive view of Salmonella ecology and antimicrobial resistance emergence in food environments in relation with cleaning and disinfection procedures.


Assuntos
Antibacterianos/farmacologia , Desinfecção/métodos , Farmacorresistência Bacteriana , Salmonelose Animal/tratamento farmacológico , Salmonella/efeitos dos fármacos , Doenças dos Suínos/prevenção & controle , Matadouros , Animais , Testes de Sensibilidade Microbiana , Salmonelose Animal/epidemiologia , Salmonelose Animal/microbiologia , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...