Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 528(5): 879-889, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31658363

RESUMO

The enteric nervous system (ENS) is a complex network constituted of neurons and glial cells that ensures the intrinsic innervation of the gastrointestinal tract. ENS cells originate from vagal and sacral neural crest cells that are initially located at the border of the neural tube. In birds, sacral neural crest cells (sNCCs) first give rise to an extramural ganglionated structure (the so-called Nerve of Remak [NoR]) and to the pelvic plexus. Later, sNCCs enter the colon mesenchyme to colonize and contribute to the intrinsic innervation of the caudal part of the gut. However, no specific sNCC marker has been described. Here, we report the expression pattern of prospero-related homeobox 1 (PROX1) in the developing chick colon. PROX1 is a homeobox domain transcription factor that plays a role in cell type specification in various tissues. Using in situ hybridization and immunofluorescence techniques, we showed that PROX1 is expressed in sNCCs localized in the NoR and in the pelvic plexus. Then, using real-time quantitative PCR we found that PROX1 displays a strong and highly dynamic expression pattern during NoR development. Moreover, we demonstrated using in vivo cell tracing, that sNCCs are the source of the PROX1-positive cells within the NoR. Our results indicate that PROX1 is the first marker that specifically identifies sNCCs. This might help to better identify the role of the different neural crest cell populations in distal gut innervation, and consequently to improve the diagnosis of diseases linked to incomplete ENS formation, such as Hirschsprung's disease.


Assuntos
Proteínas de Homeodomínio/metabolismo , Intestinos/inervação , Crista Neural/metabolismo , Animais , Biomarcadores/metabolismo , Embrião de Galinha , Sistema Nervoso Entérico/citologia , Crista Neural/citologia
2.
Development ; 144(3): 507-518, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087639

RESUMO

Vascular endothelial growth factors (VEGFs) control angiogenesis and lymphangiogenesis during development and in pathological conditions. In the zebrafish trunk, Vegfa controls the formation of intersegmental arteries by primary angiogenesis and Vegfc is essential for secondary angiogenesis, giving rise to veins and lymphatics. Vegfd has been largely thought of as dispensable for vascular development in vertebrates. Here, we generated a zebrafish vegfd mutant by genome editing. vegfd mutants display significant defects in facial lymphangiogenesis independent of vegfc function. Strikingly, we find that vegfc and vegfd cooperatively control lymphangiogenesis throughout the embryo, including during the formation of the trunk lymphatic vasculature. Interestingly, we find that vegfd and vegfc also redundantly drive artery hyperbranching phenotypes observed upon depletion of Flt1 or Dll4. Epistasis and biochemical binding assays suggest that, during primary angiogenesis, Vegfd influences these phenotypes through Kdr (Vegfr2) rather than Flt4 (Vegfr3). These data demonstrate that, rather than being dispensable during development, Vegfd plays context-specific indispensable and also compensatory roles during both blood vessel angiogenesis and lymphangiogenesis.


Assuntos
Linfangiogênese/fisiologia , Neovascularização Fisiológica/fisiologia , Fator D de Crescimento do Endotélio Vascular/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Linfangiogênese/genética , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Modelos Biológicos , Mutagênese , Neovascularização Fisiológica/genética , Deleção de Sequência , Transdução de Sinais , Regulação para Cima , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/fisiologia , Fator D de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
3.
Cell Mol Life Sci ; 72(20): 3883-96, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26126787

RESUMO

The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior-posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal-epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal-epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal-epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration.


Assuntos
Mucosa Intestinal/embriologia , Mesoderma/embriologia , Comunicação Celular , Diferenciação Celular , Trato Gastrointestinal/citologia , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/metabolismo , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Miócitos de Músculo Liso/citologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
4.
Dev Dyn ; 244(1): 1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25294789

RESUMO

BACKGROUND: The interplay between Notch and Vegf signaling regulates angiogenesis in the embryo. Notch signaling limits the responsiveness of endothelial cells to Vegf to control sprouting. Despite the importance of this regulatory relationship, much remains to be understood about extrinsic factors that modulate the pathway. RESULTS: During a forward genetic screen for novel regulators of lymphangiogenesis, we isolated a mutant with reduced lymphatic vessel development. This mutant also exhibited hyperbranching arteries, reminiscent of Notch pathway mutants. Positional cloning identified a missense mutation in the carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (cad) gene. Cad is essential for UDP biosynthesis, which is necessary for protein glycosylation and de novo biosynthesis of pyrimidine-based nucleotides. Using a transgenic reporter of Notch activity, we demonstrate that Notch signaling is significantly reduced in cad(hu10125) mutants. In this context, genetic epistasis showed that increased endothelial cell responsiveness to Vegfc/Vegfr3 signaling drives excessive artery branching. CONCLUSIONS: These findings suggest important posttranslational modifications requiring Cad as an unappreciated mechanism that regulates Notch/Vegf signaling during angiogenesis.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Neovascularização Fisiológica/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra/embriologia , Animais , Aspartato Carbamoiltransferase/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Di-Hidro-Orotase/genética , Glicosilação , Receptores Notch/genética , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Development ; 141(13): 2680-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24903752

RESUMO

Lymphangiogenesis is a dynamic process that involves the sprouting of lymphatic endothelial cells (LECs) from veins to form lymphatic vessels. Vegfr3 signalling, through its ligand Vegfc and the extracellular protein Ccbe1, is essential for the sprouting of LECs to form the trunk lymphatic network. In this study we determined whether Vegfr3, Vegfc and Ccbe1 are also required for development of the facial and intestinal lymphatic networks in the zebrafish embryo. Whereas Vegfr3 and Ccbe1 are required for the development of all lymphatic vessels, Vegfc is dispensable for facial lymphatic sprouting but not for the complete development of the facial lymphatic network. We show that zebrafish vegfd is expressed in the head, genetically interacts with ccbe1 and can rescue the lymphatic defects observed following the loss of vegfc. Finally, whereas knockdown of vegfd has no phenotype, double knockdown of both vegfc and vegfd is required to prevent facial lymphatic sprouting, suggesting that Vegfc is not essential for all lymphatic sprouting and that Vegfd can compensate for loss of Vegfc during lymphatic development in the zebrafish head.


Assuntos
Linfangiogênese/fisiologia , Fator C de Crescimento do Endotélio Vascular/deficiência , Fator D de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Primers do DNA/genética , Hibridização In Situ , Linfangiogênese/genética , Microscopia Confocal , Morfolinos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
6.
Development ; 141(6): 1239-49, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24523457

RESUMO

The VEGFC/VEGFR3 signaling pathway is essential for lymphangiogenesis (the formation of lymphatic vessels from pre-existing vasculature) during embryonic development, tissue regeneration and tumor progression. The recently identified secreted protein CCBE1 is indispensible for lymphangiogenesis during development. The role of CCBE1 orthologs is highly conserved in zebrafish, mice and humans with mutations in CCBE1 causing generalized lymphatic dysplasia and lymphedema (Hennekam syndrome). To date, the mechanism by which CCBE1 acts remains unknown. Here, we find that ccbe1 genetically interacts with both vegfc and vegfr3 in zebrafish. In the embryo, phenotypes driven by increased Vegfc are suppressed in the absence of Ccbe1, and Vegfc-driven sprouting is enhanced by local Ccbe1 overexpression. Moreover, Vegfc- and Vegfr3-dependent Erk signaling is impaired in the absence of Ccbe1. Finally, CCBE1 is capable of upregulating the levels of fully processed, mature VEGFC in vitro and the overexpression of mature VEGFC rescues ccbe1 loss-of-function phenotypes in zebrafish. Taken together, these data identify Ccbe1 as a crucial component of the Vegfc/Vegfr3 pathway in the embryo.


Assuntos
Linfangiogênese/fisiologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Linfangiogênese/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Dados de Sequência Molecular , Mutação Puntual , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
7.
Blood ; 123(7): 1102-12, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24269955

RESUMO

Vascular endothelial growth factor-D (VEGFD) is a potent pro-lymphangiogenic molecule during tumor growth and is considered a key therapeutic target to modulate metastasis. Despite roles in pathological neo-lymphangiogenesis, the characterization of an endogenous role for VEGFD in vascular development has remained elusive. Here, we used zebrafish to assay for genetic interactions between the Vegf/Vegf-receptor pathway and SoxF transcription factors and identified a specific interaction between Vegfd and Sox18. Double knockdown zebrafish embryos for Sox18/Vegfd and Sox7/Vegfd exhibit defects in arteriovenous differentiation. Supporting this observation, we found that Sox18/Vegfd double but not single knockout mice displayed dramatic vascular development defects. We find that VEGFD-mitogen-activated protein kinase kinase-extracellular signal-regulated kinase signaling modulates SOX18-mediated transcription, functioning at least in part by enhancing nuclear concentration and transcriptional activity in vascular endothelial cells. This work suggests that VEGFD-mediated pathologies include or involve an underlying dysregulation of SOXF-mediated transcriptional networks.


Assuntos
Vasos Sanguíneos/embriologia , Neovascularização Fisiológica/genética , Fatores de Transcrição SOXF/metabolismo , Fator D de Crescimento do Endotélio Vascular/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Embrião de Mamíferos , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição SOXF/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Gastroenterology ; 143(3): 687-697.e9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22683258

RESUMO

BACKGROUND & AIMS: Gastrointestinal development requires regulated differentiation of visceral smooth muscle cells (SMCs) and their contractile activities; alterations in these processes might lead to gastrointestinal neuromuscular disorders. Gastrointestinal SMC development and remodeling involves post-transcriptional modification of messenger RNA. We investigated the function of the RNA-binding protein for multiple splicing 2 (RBPMS2) during normal development of visceral smooth muscle in chicken and expression of its transcript in human pathophysiological conditions. METHODS: We used avian replication-competent retroviral misexpression approaches to analyze the function of RBPMS2 in vivo and in primary cultures of chicken SMCs. We analyzed levels of RBPMS2 transcripts in colon samples from pediatric patients with Hirschsprung's disease and patients with chronic pseudo obstruction syndrome (CIPO) with megacystis. RESULTS: RBPMS2 was expressed strongly during the early stage of visceral SMC development and quickly down-regulated in differentiated and mature SMCs. Misexpression of RBPMS2 in differentiated visceral SMCs induced their dedifferentiation and reduced their contractility by up-regulating expression of Noggin, which reduced activity of bone morphogenetic protein. Visceral smooth muscles from pediatric patients with CIPO expressed high levels of RBPMS2 transcripts, compared with smooth muscle from patients without this disorder. CONCLUSIONS: Expression of RBPMS2 is present in visceral SMC precursors. Sustained expression of RBPMS2 inhibits the expression of markers of SMC differentiation by inhibiting bone morphogenetic protein activity, and stimulates SMC proliferation. RBPMS2 transcripts are up-regulated in patients with CIPO; alterations in RBPMS2 function might be involved in digestive motility disorders, particularly those characterized by the presence of muscular lesions (visceral myopathies).


Assuntos
Colo/metabolismo , Pseudo-Obstrução do Colo/metabolismo , Motilidade Gastrointestinal , Moela das Aves/metabolismo , Doença de Hirschsprung/metabolismo , Contração Muscular , Músculo Liso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Colo/fisiopatologia , Pseudo-Obstrução do Colo/genética , Pseudo-Obstrução do Colo/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento , Moela das Aves/embriologia , Doença de Hirschsprung/genética , Doença de Hirschsprung/fisiopatologia , Humanos , Lactente , Músculo Liso/embriologia , Músculo Liso/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Tempo , Transcrição Gênica , Transfecção
9.
Development ; 136(5): 791-801, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19176584

RESUMO

Gastrointestinal motility is ensured by the correct coordination of the enteric nervous system and the visceral smooth muscle cells (SMCs), and defective development of SMCs results in gut malformations and intestinal obstructions. In order to identify the molecular mechanisms that control the differentiation of the visceral mesenchyme into SMCs in the vertebrate stomach, we developed microarrays to analyze the gene expression profiles of undifferentiated and differentiated avian stomachs. We identify Scleraxis, a basic-helix-loop-helix transcription factor, as a new marker of stomach mesenchyme and find that expression of Scleraxis defines the presence of two tendons closely associated to the two visceral smooth muscles. Using targeted gene misexpression, we show that FGF signaling is sufficient to induce Scleraxis expression and to establish two tendon domains adjacent to the smooth muscle structures. We also demonstrate that the tendon organization is perturbed by altering Scleraxis expression or function. Moreover, using primary cells derived from stomach mesenchyme, we find that undifferentiated stomach mesenchyme can give rise to both SMCs and tendon cells. These data show that upon FGF activation, selected stomach mesenchymal cells are primed to express Scleraxis and to differentiate into tendon cells. Our findings identify a new anatomical and functional domain in the vertebrate stomach that we characterize as being two intermuscular tendons closely associated with the visceral SMC structures. We also demonstrate that the coordinated development of both tendon and smooth muscle domains is essential for the correct morphogenesis of the stomach.


Assuntos
Músculo Liso/embriologia , Estômago/embriologia , Tendões/embriologia , Animais , Animais Geneticamente Modificados , Proteínas Aviárias/antagonistas & inibidores , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Embrião de Galinha , DNA/genética , Sistema Nervoso Entérico/embriologia , Sistema Nervoso Entérico/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Mucosa Gástrica/metabolismo , Motilidade Gastrointestinal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Músculo Liso/citologia , Músculo Liso/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Tendões/metabolismo
10.
Dev Dyn ; 237(4): 1165-71, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18351666

RESUMO

Rho GTPases play central roles in the control of cell adhesion and migration, cell cycle progression, growth, and differentiation. However, although most of our knowledge of Rho GTPase function comes from the study of the three classic Rho GTPases RhoA, Rac1, and Cdc42, recent studies have begun to explore the expression, regulation, and function of some of the lesser-known members of the Rho GTPase family. In the present study, we cloned the avian orthologues of RhoV (or Chp for Cdc42 homologous protein) and RhoU (or Wrch-1 for Wnt-regulated Cdc42 homolog-1) and examined their expression patterns by in situ hybridization analysis both during early chick embryogenesis and later on, during gastrointestinal tract development. Our data show that both GTPases are detected in the primitive streak, the somites, the neural crest cells, and the gastrointestinal tract with distinct territories and/or temporal expression windows. Although both proteins are 90% identical, our results indicate that cRhoV and cRhoU are distinctly expressed during chicken embryonic development.


Assuntos
Embrião de Galinha , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Embrião de Galinha/anatomia & histologia , Embrião de Galinha/fisiologia , Clonagem Molecular , Proteínas de Ligação ao GTP/classificação , Proteínas de Ligação ao GTP/genética , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/metabolismo , Humanos , Hibridização In Situ , Filogenia , Proteínas rho de Ligação ao GTP/classificação , Proteínas rho de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...