Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Intell Med ; 153: 102897, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810471

RESUMO

Convolutional neural networks (CNNs) are gradually being recognized in the neuroimaging community as a powerful tool for image analysis. Despite their outstanding performances, some aspects of CNN functioning are still not fully understood by human operators. We postulated that the interpretability of CNNs applied to neuroimaging data could be improved by investigating their behavior when they are fed data with known characteristics. We analyzed the ability of 3D CNNs to discriminate between original and altered whole-brain parametric maps derived from diffusion-weighted magnetic resonance imaging. The alteration consisted in linearly changing the voxel intensity of either one (monoregion) or two (biregion) anatomical regions in each brain volume, but without mimicking any neuropathology. Performing ten-fold cross-validation and using a hold-out set for testing, we assessed the CNNs' discrimination ability according to the intensity of the altered regions, comparing the latter's size and relative position. Monoregion CNNs showed that the larger the modified region, the smaller the intensity increase needed to achieve good performances. Biregion CNNs systematically outperformed monoregion CNNs, but could only detect one of the two target regions when tested on the corresponding monoregion images. Exploiting prior information on training data allowed for a better understanding of CNN behavior, especially when altered regions were combined. This can inform about the complexity of CNN pattern retrieval and elucidate misclassified examples, particularly relevant for pathological data. The proposed analytical approach may serve to gain insights into CNN behavior and guide the design of enhanced detection systems exploiting our prior knowledge.


Assuntos
Encéfalo , Redes Neurais de Computação , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Neuroimagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino
2.
J Appl Clin Med Phys ; 24(6): e13923, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36864758

RESUMO

PURPOSE: To develop an alternative computational approach for EPID-based non-transit dosimetry using a convolutional neural network model. METHOD: A U-net followed by a non-trainable layer named True Dose Modulation recovering the spatialized information was developed. The model was trained on 186 Intensity-Modulated Radiation Therapy Step & Shot beams from 36 treatment plans of different tumor locations to convert grayscale portal images into planar absolute dose distributions. Input data were acquired from an amorphous-Silicon Electronic Portal Image Device and a 6 MV X-ray beam. Ground truths were computed from a conventional kernel-based dose algorithm. The model was trained by a two-step learning process and validated through a five-fold cross-validation procedure with sets of training and validation of 80% and 20%, respectively. A study regarding the dependance of the amount of training data was conducted. The performance of the model was evaluated from a quantitative analysis based the ϒ-index, absolute and relative errors computed between the inferred dose distributions and ground truths for six square and 29 clinical beams from seven treatment plans. These results were also compared to those of an existing portal image-to-dose conversion algorithm. RESULTS: For the clinical beams, averages of ϒ-index and ϒ-passing rate (2%-2mm > 10% Dmax ) of 0.24 (±0.04) and 99.29 (±0.70)% were obtained. For the same metrics and criteria, averages of 0.31 (±0.16) and 98.83 (±2.40)% were obtained with the six square beams. Overall, the developed model performed better than the existing analytical method. The study also showed that sufficient model accuracy can be achieved with the amount of training samples used. CONCLUSION: A deep learning-based model was developed to convert portal images into absolute dose distributions. The accuracy obtained shows that this method has great potential for EPID-based non-transit dosimetry.


Assuntos
Radiometria , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos , Redes Neurais de Computação , Algoritmos , Planejamento da Radioterapia Assistida por Computador/métodos
3.
Neurocrit Care ; 37(Suppl 2): 303-312, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876960

RESUMO

BACKGROUND: There is an unfulfilled need to find the best way to automatically capture, analyze, organize, and merge structural and functional brain magnetic resonance imaging (MRI) data to ultimately extract relevant signals that can assist the medical decision process at the bedside of patients in postanoxic coma. We aimed to develop and validate a deep learning model to leverage multimodal 3D MRI whole-brain times series for an early evaluation of brain damages related to anoxoischemic coma. METHODS: This proof-of-concept, prospective, cohort study was undertaken at the intensive care unit affiliated with the University Hospital (Toulouse, France), between March 2018 and May 2020. All patients were scanned in coma state at least 2 days (4 ± 2 days) after cardiac arrest. Over the same period, age-matched healthy volunteers were recruited and included. Brain MRI quantification encompassed both "functional data" from regions of interest (precuneus and posterior cingulate cortex) with whole-brain functional connectivity analysis and "structural data" (gray matter volume, T1-weighted, fractional anisotropy, and mean diffusivity). A specifically designed 3D convolutional neuronal network (CNN) was created to allow conscious state discrimination (coma vs. controls) by using raw MRI indices as the input. A voxel-wise visualization method based on the study of convolutional filters was applied to support CNN outcome. The Ethics Committee of the University Teaching Hospital of Toulouse, France (2018-A31) approved the study and informed consent was obtained from all participants. RESULTS: The final cohort consisted of 29 patients in postanoxic coma and 34 healthy volunteers. Coma patients were successfully discerned from controls by using 3D CNN in combination with different MR indices. The best accuracy was achieved by functional MRI data, in particular with resting-state functional MRI of the posterior cingulate cortex, with an accuracy of 0.96 (range 0.94-0.98) on the test set from 10-time repeated tenfold cross-validation. Even more satisfactory performances were achieved through the majority voting strategy, which was able to compensate for mistakes from single MR indices. Visualization maps allowed us to identify the most relevant regions for each MRI index, notably regions previously described as possibly being involved in consciousness emergence. Interestingly, a posteriori analysis of misclassified patients indicated that they may present some common functional MRI traits with controls, which suggests further favorable outcomes. CONCLUSIONS: A fully automated identification of clinically relevant signals from complex multimodal neuroimaging data is a major research topic that may bring a radical paradigm shift in the neuroprognostication of patients with severe brain injury. We report for the first time a successful discrimination between patients in postanoxic coma patients from people serving as controls by using 3D CNN whole-brain structural and functional MRI data. Clinical Trial Number http://ClinicalTrials.gov (No. NCT03482115).


Assuntos
Coma , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Coortes , Coma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Estudos Prospectivos
4.
BMC Med Genomics ; 8: 3, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25888889

RESUMO

BACKGROUND: Personalized medicine has become a priority in breast cancer patient management. In addition to the routinely used clinicopathological characteristics, clinicians will have to face an increasing amount of data derived from tumor molecular profiling. The aims of this study were to develop a new gene selection method based on a fuzzy logic selection and classification algorithm, and to validate the gene signatures obtained on breast cancer patient cohorts. METHODS: We analyzed data from four published gene expression datasets for breast carcinomas. We identified the best discriminating genes by comparing molecular expression profiles between histologic grade 1 and 3 tumors for each of the training datasets. The most pertinent probes were selected and used to define fuzzy molecular grade 1-like (good prognosis) and fuzzy molecular grade 3-like (poor prognosis) profiles. To evaluate the prognostic performance of the fuzzy grade signatures in breast cancer tumors, a Kaplan-Meier analysis was conducted to compare the relapse-free survival deduced from histologic grade and fuzzy molecular grade classification. RESULTS: We applied the fuzzy logic selection on breast cancer databases and obtained four new gene signatures. Analysis in the training public sets showed good performance of these gene signatures for grade (sensitivity from 90% to 95%, specificity 67% to 93%). To validate these gene signatures, we designed probes on custom microarrays and tested them on 150 invasive breast carcinomas. Good performance was obtained with an error rate of less than 10%. For one gene signature, among 74 histologic grade 3 and 18 grade 1 tumors, 88 cases (96%) were correctly assigned. Interestingly histologic grade 2 tumors (n = 58) were split in these two molecular grade categories. CONCLUSION: We confirmed the use of fuzzy logic selection as a new tool to identify gene signatures with good reliability and increased classification power. This method based on artificial intelligence algorithms was successfully applied to breast cancers molecular grade classification allowing histologic grade 2 classification into grade 1 and grade 2 like to improve patients prognosis. It opens the way to further development for identification of new biomarker combinations in other applications such as prediction of treatment response.


Assuntos
Neoplasias da Mama/genética , Biologia Computacional/métodos , Lógica Fuzzy , Perfilação da Expressão Gênica , Algoritmos , Neoplasias da Mama/metabolismo , Estudos de Coortes , Bases de Dados Genéticas , Tomada de Decisões , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Recidiva Local de Neoplasia/genética , Análise de Sequência com Séries de Oligonucleotídeos , Medicina de Precisão/métodos , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
J Comput Biol ; 20(8): 610-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23899014

RESUMO

Microarray profiling has recently generated the hope to gain new insights into breast cancer biology and thereby improve the performance of current prognostic tools. However, it also poses several serious challenges to classical data analysis techniques related to the characteristics of resulting data, mainly high dimensionality and low signal-to-noise ratio. Despite the tremendous research work performed to handle the first challenge in the feature selection framework, very little attention has been directed to address the second one. We propose in this article to address both issues simultaneously based on symbolic data analysis capabilities in order to derive more accurate genetic marker-based prognostic models. In particular, interval data representation is employed to model various uncertainties in microarray measurements. A recent feature selection algorithm that handles symbolic interval data is used then to derive a genetic signature. The predictive value of the derived signature is then assessed by following a rigorous experimental setup and compared with existing prognostic approaches in terms of predictive performance and estimated survival probability. It is shown that the derived signature (GenSym) performs significantly better than other prognostic models, including the 70-gene signature, St. Gallen, and National Institutes of Health criteria.


Assuntos
Algoritmos , Biomarcadores Tumorais/análise , Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Razão Sinal-Ruído , Neoplasias da Mama/mortalidade , Neoplasias da Mama/secundário , Biologia Computacional , Mineração de Dados , Bases de Dados Genéticas , Feminino , Humanos , Pessoa de Meia-Idade , Modelos Estatísticos , Reconhecimento Automatizado de Padrão , Prognóstico , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...