Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875597

RESUMO

G protein-coupled receptor 182 (GPR182) has been shown to be expressed in endothelial cells; however, its ligand and physiological role has remained elusive. We found GPR182 to be expressed in microvascular and lymphatic endothelial cells of most organs and to bind with nanomolar affinity the chemokines CXCL10, CXCL12, and CXCL13. In contrast to conventional chemokine receptors, binding of chemokines to GPR182 did not induce typical downstream signaling processes, including Gq- and Gi-mediated signaling or ß-arrestin recruitment. GPR182 showed relatively high constitutive activity in regard to ß-arrestin recruitment and rapidly internalized in a ligand-independent manner. In constitutive GPR182-deficient mice, as well as after induced endothelium-specific loss of GPR182, we found significant increases in the plasma levels of CXCL10, CXCL12, and CXCL13. Global and induced endothelium-specific GPR182-deficient mice showed a significant decrease in hematopoietic stem cells in the bone marrow as well as increased colony-forming units of hematopoietic progenitors in the blood and the spleen. Our data show that GPR182 is a new atypical chemokine receptor for CXCL10, CXCL12, and CXCL13, which is involved in the regulation of hematopoietic stem cell homeostasis.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Animais , Quimiocina CXCL10 , Quimiocina CXCL12 , Quimiocina CXCL13 , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Feminino , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/fisiologia , beta-Arrestinas/metabolismo
2.
Hypertension ; 69(5): 870-878, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28320854

RESUMO

Acute kidney injury induced by ischemia/reperfusion (IR) is a frequent complication in hospitalized patients. Mineralocorticoid receptor antagonism has shown to be helpful against renal IR consequences; however, the potential benefit of novel nonsteroidal mineralocorticoid receptor antagonists such as finerenone has to be further explored. In this study, we evaluated the efficacy of finerenone to prevent the acute and chronic consequences of ischemic acute kidney injury. For the acute study (24 hours), 18 rats were divided into sham, bilateral renal ischemia of 25 minutes, and rats that received 3 doses of finerenone at 48, 24, and 1 hour before the ischemia. For the chronic study (4 months), 23 rats were divided into sham, rats that underwent 45 minutes of bilateral ischemia, and rats treated with finerenone at days 2 and 1 and 1 hour before IR. We found that after 24 hours of reperfusion, the untreated IR rats presented kidney dysfunction and tubular injury. Kidney injury molecule-1 and neutrophil gelatinase associated to lipolacin mRNA levels were increased. In contrast, the rats treated with finerenone displayed normal kidney function and significantly lesser tubular injury and kidney injury molecule-1 and neutrophil gelatinase associated to lipolacin levels. After 4 months, the IR rats developed chronic kidney disease, evidenced by kidney dysfunction, increased proteinuria and renal vascular resistance, tubular dilation, extensive tubule-interstitial fibrosis, and an increase in kidney transforming growth factor-ß and collagen-I mRNA. The transition from acute kidney injury to chronic kidney disease was fully prevented by finerenone. Altogether, our data show that in the rat, finerenone is able to prevent acute kidney injury induced by IR and the chronic and progressive deterioration of kidney function and structure.


Assuntos
Injúria Renal Aguda/metabolismo , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Naftiridinas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Insuficiência Renal Crônica/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/complicações , Animais , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Rim/efeitos dos fármacos , Rim/metabolismo , Lipocalina-2/metabolismo , Masculino , Malondialdeído/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Naftiridinas/farmacologia , Ratos , Ratos Wistar , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Traumatismo por Reperfusão/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...