Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 550: 1044-1056, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26855357

RESUMO

The transition zone between free and underground atmospheres hosts spectacular phenomena, as demonstrated by temperature measurements performed in the 4.6m diameter and 20m deep vertical access pit of an abandoned underground quarry located in Vincennes, near Paris. In summer, a stable stratification of the atmosphere is maintained, with coherent temperature variations associated with atmospheric pressure changes, with a barometric tide S2 larger than 0.1°C peak to peak. When the winter regime of turbulent cold air avalanches is initiated, stratification with pressure induced signals can be restored transiently in the upper part of the pit, while the lower part remains fully mixed and insensitive to pressure variations. The amplitude of the pressure to temperature transfer function increases with frequency below 5×10(-4)Hz, with values at 3×10(-5)Hz varying from 0.1°C·hPa(-1) at the bottom up to 2°C·hPa(-1) towards the top of the pit. These temperature variations are accounted for by cave breathing, which is pressure induced motion of air amplified by the large volume of the quarry. This understanding is supported by a numerical model including advective heat transport, heat diffusion, and heat exchange with the pit walls. Mean lifetime in the pit is of the order of 9 to 13h, and barometric pumping results in an effective ventilation rate of the quarry of the order of 10(-7)s(-1). This study illustrates the important role of barometric pumping in heat and matter transport between atmosphere and lithosphere. The resulting stationary and transient states, revealed in this pit, are probably a general feature of functioning interface systems, and therefore are an important aspect to consider in problems of contaminant transport, or the preservation of precious heritage such as rare ecosystems or painted caves.

2.
Proc Natl Acad Sci U S A ; 109(47): 19129-33, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23064635

RESUMO

To understand the dynamics of the Earth's fluid, iron-rich outer core, only indirect observations are available. The Earth's magnetic field, originating mainly within the core, and its temporal variations can be used to infer the fluid motion at the top of the core, on a decadal and subdecadal time-scale. Gravity variations resulting from changes in the mass distribution within the Earth may also occur on the same time-scales. Such variations include the signature of the flow inside the core, though they are largely dominated by the water cycle contributions. Our study is based on 8 y of high-resolution, high-accuracy magnetic and gravity satellite data, provided by the CHAMP and GRACE missions. From the newly derived geomagnetic models we have computed the core magnetic field, its temporal variations, and the core flow evolution. From the GRACE CNES/GRGS series of time variable geoid models, we have obtained interannual gravity models by using specifically designed postprocessing techniques. A correlation analysis between the magnetic and gravity series has demonstrated that the interannual changes in the second time derivative of the core magnetic field under a region from the Atlantic to Indian Ocean coincide in phase with changes in the gravity field. The order of magnitude of these changes and proposed correlation are plausible, compatible with a core origin; however, a complete theoretical model remains to be built. Our new results and their broad geophysical significance could be considered when planning new Earth observation space missions and devising more sophisticated Earth's interior models.

3.
J Environ Radioact ; 71(1): 17-32, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14557034

RESUMO

Radon-222 activity concentration has been monitored since 1999 in an underground limestone quarry located in Vincennes, near Paris, France. It is homogeneous in summer, with an average value of 1700 Bq m(-3), and varies from 730 to 1450 Bq m(-3) in winter, indicating natural ventilation with a rate ranging from 0.5 to 2.4 x 10(-6) s(-1) (0.04-0.22 day(-1)). This hypothesis is supported by measurements in the vertical access pit where, in winter, a turbulent air current produces a stable radon profile, smoothly decreasing from 700 Bq m(-3) at 20 m depth to 300 Bq m(-3) at surface. In summer, a thermal stratification is maintained in the pit, but the radon-222 concentration jumps repeatedly between 100 and 2000 Bq m(-3). These jumps are due to atmospheric pressure pumping, which induces ventilation in the quarry at a rate of about 0.1 x 10(-6) s(-1) (0.009 day(-1)). Radon-222 monitoring thus provides a dynamical characterisation of ventilation regimes, which is important for the assessment of the long-term evolution of underground systems.


Assuntos
Mineração , Radônio/análise , Poluentes Radioativos do Solo/análise , Ventilação , Monitoramento Ambiental , França , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...