Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 83(11): 3413-3423, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33054188

RESUMO

Stationary and slow-moving marine organisms regularly employ a natural product chemical defense to prevent being colonized by marine micro- and macroorganisms. While these natural antifoulants can be structurally diverse, they often display highly conserved chemistries and physicochemical properties, suggesting a natural marine antifouling pharmacophore. In our current report, we investigate the marine natural product phidianidine A, which displays several chemical properties found in highly potent marine antifoulants. Phidianidine A and synthetic analogues were screened against the settlement and metamorphosis of Amphibalanus improvisus cyprids, and several of the compounds displayed inhibitory activities at low micromolar concentrations with IC50 values down to 0.7 µg/mL observed. The settlement study highlights that phidianidine A is a potent natural antifoulant and that the scaffold can be tuned to generate simpler and improved synthetic analogues. The bioactivity is closely linked to the size of the compound and to its basicity. The study also illustrates that active analogues can be prepared in the absence of the natural constrained 1,2,4-oxadiazole ring. A synthetic lead analogue of phidianidine A was incorporated in a coating and included in antifouling field trials, where it was shown that the coating induced potent inhibition of marine bacteria and microalgae settlement.


Assuntos
Ascomicetos/efeitos dos fármacos , Incrustação Biológica , Alcaloides Indólicos/farmacologia , Oxidiazóis/farmacologia , Água do Mar , Thoracica , Animais , Alcaloides Indólicos/química , Oxidiazóis/química
2.
Mar Drugs ; 15(7)2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704947

RESUMO

Since the banning of several families of compounds in antifouling (AF) coatings, the search for environmentally friendly AF compounds has intensified. Natural sources of AF compounds have been identified in marine organisms and can be used to create analogues in laboratory. In a previous study, we identified that dibromohemibastadin-1 (DBHB) is a promising AF molecule, leading to the inhibition of the activity of phenoloxidase, an enzyme involved in the attachment of mussels to surfaces. This paper describes the activity of the DBHB on biofilm formation and its detachment and on bacterial adhesion and communication: quorum sensing. DBHB has an anti-biofilm activity without affecting adhesion of marine and terrestrial bacteria at a dose of 10 µM. Moreover, DBHB activity on quorum sensing (QS) is demonstrated at doses of 8 and 16 µM. The activity of DBHB on QS is compared to kojic acid, a quorum sensing inhibitor already described. This compound is a promising environmentally friendly molecule potentially useful for the inhibition of microfouling.


Assuntos
Organismos Aquáticos/química , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Produtos Biológicos/farmacologia , Incrustação Biológica , Monofenol Mono-Oxigenase/metabolismo , Pironas/farmacologia , Percepção de Quorum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...