Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Data ; 10(1): 155, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991071

RESUMO

Anthropogenic emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) have made significant contributions to global warming since the pre-industrial period and are therefore targeted in international climate policy. There is substantial interest in tracking and apportioning national contributions to climate change and informing equitable commitments to decarbonisation. Here, we introduce a new dataset of national contributions to global warming caused by historical emissions of carbon dioxide, methane, and nitrous oxide during the years 1851-2021, which are consistent with the latest findings of the IPCC. We calculate the global mean surface temperature response to historical emissions of the three gases, including recent refinements which account for the short atmospheric lifetime of CH4. We report national contributions to global warming resulting from emissions of each gas, including a disaggregation to fossil and land use sectors. This dataset will be updated annually as national emissions datasets are updated.


Assuntos
Mudança Climática , Dióxido de Carbono/análise , Metano , Óxido Nitroso/análise
3.
Sci Adv ; 8(16): eabl9250, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452281

RESUMO

It is not currently possible to quantify regional-scale fossil fuel carbon dioxide (ffCO2) emissions with high accuracy in near real time. Existing atmospheric methods for separating ffCO2 from large natural carbon dioxide variations are constrained by sampling limitations, so that estimates of regional changes in ffCO2 emissions, such as those occurring in response to coronavirus disease 2019 (COVID-19) lockdowns, rely on indirect activity data. We present a method for quantifying regional signals of ffCO2 based on continuous atmospheric measurements of oxygen and carbon dioxide combined into the tracer "atmospheric potential oxygen" (APO). We detect and quantify ffCO2 reductions during 2020-2021 caused by the two U.K. COVID-19 lockdowns individually using APO data from Weybourne Atmospheric Observatory in the United Kingdom and a machine learning algorithm. Our APO-based assessment has near-real-time potential and provides high-frequency information that is in good agreement with the spread of ffCO2 emissions reductions from three independent lower-frequency U.K. estimates.

4.
Science ; 375(6585): 1091-1092, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271335

RESUMO

Large changes in global ecosystem productivity are set in motion by carbon dioxide rise.


Assuntos
Mudança Climática , Ecossistema , Dióxido de Carbono
5.
Sci Data ; 8(1): 2, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414478

RESUMO

Quantification of CO2 fluxes at the Earth's surface is required to evaluate the causes and drivers of observed increases in atmospheric CO2 concentrations. Atmospheric inversion models disaggregate observed variations in atmospheric CO2 concentration to variability in CO2 emissions and sinks. They require prior constraints fossil CO2 emissions. Here we describe GCP-GridFED (version 2019.1), a gridded fossil emissions dataset that is consistent with the national CO2 emissions reported by the Global Carbon Project (GCP). GCP-GridFEDv2019.1 provides monthly fossil CO2 emissions estimates for the period 1959-2018 at a spatial resolution of 0.1°. Estimates are provided separately for oil, coal and natural gas, for mixed international bunker fuels, and for the calcination of limestone during cement production. GCP-GridFED also includes gridded estimates of O2 uptake based on oxidative ratios for oil, coal and natural gas. It will be updated annually and made available for atmospheric inversions contributing to GCP global carbon budget assessments, thus aligning the prior constraints on top-down fossil CO2 emissions with the bottom-up estimates compiled by the GCP.

6.
Climate (Basel) ; 5(4): 93, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31285999

RESUMO

The so far largely unabated emissions of greenhouse gases (GHGs) are expected to increase global temperatures substantially over this century. We quantify the patterns of increases for 246 globally-representative cities in the Sustainable Healthy Urban Environments (SHUE) database. We used an ensemble of 18 global climate models (GCMs) run under a low (RCP2.6) and high (RCP8.5) emissions scenario to estimate the increase in monthly mean temperatures by 2050 and 2100 based on 30-year averages. Model simulations were from the Coupled Model Inter-comparison Project Phase 5 (CMIP5). Annual mean temperature increases were 0.93 degrees Celsius by 2050 and 1.10 degrees Celsius by 2100 under RCP2.6, and 1.27 and 4.15 degrees Celsius under RCP8.5, but with substantial city-to-city variation. By 2100, under RCP2.6 no city exceeds an increase in Tmean > 2 degrees Celsius (relative to a 2017 baseline), while all do under RCP8.5, some with increases in Tmean close to, or even greater than, 7 degrees Celsius. The increases were greatest in cities of mid to high latitude, in humid temperate and dry climate regions, and with large seasonal variation in temperature. Cities are likely to experience large increases in hottest month mean temperatures under high GHG emissions trajectories, which will often present substantial challenges to adaptation and health protection.

7.
Proc Natl Acad Sci U S A ; 116(24): 11646-11651, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31138699

RESUMO

Measurements show large decadal variability in the rate of [Formula: see text] accumulation in the atmosphere that is not driven by [Formula: see text] emissions. The decade of the 1990s experienced enhanced carbon accumulation in the atmosphere relative to emissions, while in the 2000s, the atmospheric growth rate slowed, even though emissions grew rapidly. These variations are driven by natural sources and sinks of [Formula: see text] due to the ocean and the terrestrial biosphere. In this study, we compare three independent methods for estimating oceanic [Formula: see text] uptake and find that the ocean carbon sink could be responsible for up to 40% of the observed decadal variability in atmospheric [Formula: see text] accumulation. Data-based estimates of the ocean carbon sink from [Formula: see text] mapping methods and decadal ocean inverse models generally agree on the magnitude and sign of decadal variability in the ocean [Formula: see text] sink at both global and regional scales. Simulations with ocean biogeochemical models confirm that climate variability drove the observed decadal trends in ocean [Formula: see text] uptake, but also demonstrate that the sensitivity of ocean [Formula: see text] uptake to climate variability may be too weak in models. Furthermore, all estimates point toward coherent decadal variability in the oceanic and terrestrial [Formula: see text] sinks, and this variability is not well-matched by current global vegetation models. Reconciling these differences will help to constrain the sensitivity of oceanic and terrestrial [Formula: see text] uptake to climate variability and lead to improved climate projections and decadal climate predictions.

9.
Lancet Planet Health ; 2(12): e540-e547, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30526940

RESUMO

BACKGROUND: Changes in temperature and humidity due to climate change affect living and working conditions. An understanding of the effects of different global temperature changes on population health is needed to inform the continued implementation of the Paris Climate Agreement and to increase global ambitions for greater cuts in emissions. By use of historical and projected climate conditions, we aimed to investigate the effects of climate change on workability (ie, the ability to work) and survivability (the ability to survive). METHODS: In this modelling study, we estimated the changes in populations exposed to excessive heat stress between the recent past (ie, 1986-2005) and 2100. We used climate data from four models to calculate the wet-bulb globe temperature, an established heat exposure index that can be used to assess the effects of temperature, humidity, and other environmental factors on humans. We defined and applied thresholds for risks to workability (where the monthly mean of daily maximum wet-bulb globe temperature exceeds 34°C) and survivability (where the maximum daily wet-bulb globe temperature exceeds 40°C for 3 consecutive days), and we used population projections to quantify changes in risk associated with different changes to the global temperature. FINDINGS: The risks to workability increase substantially with global mean surface temperature in all four climate models, with approximately 1 billion people affected globally after an increase in the global temperature of about 2·5°C above pre-industrial levels. There is greater variability between climate models for exposures above the threshold for risks to survivability than for risks to workability. The number of people who are likely to be exposed to heat stress exceeding the survivability threshold increases with global temperature change, to reach around 20 million people globally after an increase of about 2·5°C, estimated from the median of the models, but with a large model uncertainty. More people are likely to be exposed to heat stress in urban than in rural areas. Population exposure can fluctuate over time and change substantially within one decade. INTERPRETATION: Exposure to excessive heat stress is projected to be widespread in tropical or subtropical low-income and middle-income countries, highlighting the need to build on the Paris Agreement regarding global temperature targets, to protect populations who have contributed little to greenhouse gas emissions. The non-linear dependency of heat exposure risk on temperature highlights the importance of understanding thresholds in coupled human-climate systems. FUNDING: Wellcome Trust.


Assuntos
Mudança Climática , Calor Extremo , Saúde Global , Modelos Teóricos , Saúde Ocupacional , Transtornos de Estresse por Calor/epidemiologia , Humanos
10.
Philos Trans A Math Phys Eng Sci ; 376(2119)2018 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-29610376

RESUMO

The much awaited and intensely negotiated Paris Agreement was adopted on 12 December 2015 by the Parties to the United Nations Framework Convention on Climate Change. The agreement set out a more ambitious long-term temperature goal than many had anticipated, implying more stringent emissions reductions that have been under-explored by the research community. By its very nature a multidisciplinary challenge, filling the knowledge gap requires not only climate scientists, but the whole Earth system science community, as well as economists, engineers, lawyers, philosophers, politicians, emergency planners and others to step up. To kick start cross-disciplinary discussions, the University of Oxford's Environmental Change Institute focused its 25th anniversary conference upon meeting the challenges of the Paris Agreement for science and society. This theme issue consists of review papers, opinion pieces and original research from some of the presentations within that meeting, covering a wide range of issues underpinning the Paris Agreement.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

11.
Philos Trans A Math Phys Eng Sci ; 375(2102)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28784705

RESUMO

Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of pCO2-sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.


Assuntos
Ecossistema , Modelos Estatísticos , Oxigênio/análise , Água do Mar/química , Simulação por Computador , Oceanos e Mares , Oxigênio/metabolismo
12.
Proc Natl Acad Sci U S A ; 113(46): 13104-13108, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799533

RESUMO

Conventional calculations of the global carbon budget infer the land sink as a residual between emissions, atmospheric accumulation, and the ocean sink. Thus, the land sink accumulates the errors from the other flux terms and bears the largest uncertainty. Here, we present a Bayesian fusion approach that combines multiple observations in different carbon reservoirs to optimize the land (B) and ocean (O) carbon sinks, land use change emissions (L), and indirectly fossil fuel emissions (F) from 1980 to 2014. Compared with the conventional approach, Bayesian optimization decreases the uncertainties in B by 41% and in O by 46%. The L uncertainty decreases by 47%, whereas F uncertainty is marginally improved through the knowledge of natural fluxes. Both ocean and net land uptake (B + L) rates have positive trends of 29 ± 8 and 37 ± 17 Tg C⋅y-2 since 1980, respectively. Our Bayesian fusion of multiple observations reduces uncertainties, thereby allowing us to isolate important variability in global carbon cycle processes.

13.
Public Health Rev ; 37: 29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29450070

RESUMO

Rising CO2 in the atmosphere is the main cause of anthropogenic climate change, and the data shows a clear increase in global temperature of about 1 °C since pre-industrial levels. Changes in climate extremes are also occurring, with observed increases in the frequency of heat waves, in intense precipitation (rainfall and snowfall) in many places, and in sea level and storm surges. A changing climate with rising extremes has associated risks for food production and other health-related impacts. In order to limit climate change well below 2 °C, our carbon emissions must rapidly follow a decreasing trajectory to near zero.

14.
J Theor Biol ; 272(1): 160-73, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21146542

RESUMO

In the face of stochastic climatic perturbations, the overall stability of an ecosystem will be determined by the balance between its resilience and its resistance, but their relative importance is still unknown. Using aquatic food web models we study ecosystem stability as a function of food web complexity. We measured three dynamical stability properties: resilience, resistance, and variability. Specifically, we evaluate how a decrease in the strength of predator-prey interactions with food web complexity, reflecting a decrease in predation efficiency with the number of prey per predator, affects the overall stability of the ecosystem. We find that in mass conservative ecosystems, a lower interaction strength slows down the mass cycling rate in the system and this increases its resistance to perturbations of the growth rate of primary producers. Furthermore, we show that the overall stability of the food webs is mostly given by their resistance, and not by their resilience. Resilience and resistance display opposite trends, although they are shown not to be simply opposite concepts but rather independent properties. The ecological implication is that weaker predator-prey interactions in closed ecosystems can stabilize food web dynamics by increasing its resistance to climatic perturbations.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Comportamento Predatório , Animais , Luz , Fitoplâncton/fisiologia , Fitoplâncton/efeitos da radiação , Comportamento Predatório/efeitos da radiação , Probabilidade , Processos Estocásticos , Zooplâncton/fisiologia , Zooplâncton/efeitos da radiação
15.
Adv Mar Biol ; 56: 1-150, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19895974

RESUMO

The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Movimentos do Ar , Animais , Regiões Antárticas , Regiões Árticas , Atmosfera , Dióxido de Carbono , Ecossistema , Oceanografia , Oceanos e Mares , Movimentos da Água
17.
Proc Natl Acad Sci U S A ; 104(47): 18866-70, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-17962418

RESUMO

The growth rate of atmospheric carbon dioxide (CO(2)), the largest human contributor to human-induced climate change, is increasing rapidly. Three processes contribute to this rapid increase. Two of these processes concern emissions. Recent growth of the world economy combined with an increase in its carbon intensity have led to rapid growth in fossil fuel CO(2) emissions since 2000: comparing the 1990s with 2000-2006, the emissions growth rate increased from 1.3% to 3.3% y(-1). The third process is indicated by increasing evidence (P = 0.89) for a long-term (50-year) increase in the airborne fraction (AF) of CO(2) emissions, implying a decline in the efficiency of CO(2) sinks on land and oceans in absorbing anthropogenic emissions. Since 2000, the contributions of these three factors to the increase in the atmospheric CO(2) growth rate have been approximately 65 +/- 16% from increasing global economic activity, 17 +/- 6% from the increasing carbon intensity of the global economy, and 18 +/- 15% from the increase in AF. An increasing AF is consistent with results of climate-carbon cycle models, but the magnitude of the observed signal appears larger than that estimated by models. All of these changes characterize a carbon cycle that is generating stronger-than-expected and sooner-than-expected climate forcing.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/economia , Carbono/análise , Ecossistema , Combustíveis Fósseis , Efeito Estufa , Fatores de Tempo
18.
Science ; 316(5832): 1735-8, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17510327

RESUMO

Based on observed atmospheric carbon dioxide (CO2) concentration and an inverse method, we estimate that the Southern Ocean sink of CO2 has weakened between 1981 and 2004 by 0.08 petagrams of carbon per year per decade relative to the trend expected from the large increase in atmospheric CO2. We attribute this weakening to the observed increase in Southern Ocean winds resulting from human activities, which is projected to continue in the future. Consequences include a reduction of the efficiency of the Southern Ocean sink of CO2 in the short term (about 25 years) and possibly a higher level of stabilization of atmospheric CO2 on a multicentury time scale.

19.
Proc Natl Acad Sci U S A ; 104(24): 10288-93, 2007 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-17519334

RESUMO

CO2 emissions from fossil-fuel burning and industrial processes have been accelerating at a global scale, with their growth rate increasing from 1.1% y(-1) for 1990-1999 to >3% y(-1) for 2000-2004. The emissions growth rate since 2000 was greater than for the most fossil-fuel intensive of the Intergovernmental Panel on Climate Change emissions scenarios developed in the late 1990s. Global emissions growth since 2000 was driven by a cessation or reversal of earlier declining trends in the energy intensity of gross domestic product (GDP) (energy/GDP) and the carbon intensity of energy (emissions/energy), coupled with continuing increases in population and per-capita GDP. Nearly constant or slightly increasing trends in the carbon intensity of energy have been recently observed in both developed and developing regions. No region is decarbonizing its energy supply. The growth rate in emissions is strongest in rapidly developing economies, particularly China. Together, the developing and least-developed economies (forming 80% of the world's population) accounted for 73% of global emissions growth in 2004 but only 41% of global emissions and only 23% of global cumulative emissions since the mid-18th century. The results have implications for global equity.


Assuntos
Dióxido de Carbono/análise , Fontes Geradoras de Energia , Combustíveis Fósseis/estatística & dados numéricos , Densidade Demográfica , Atmosfera/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , China , Clima , Países Desenvolvidos , Países em Desenvolvimento , Fontes Geradoras de Energia/economia , Fontes Geradoras de Energia/estatística & dados numéricos , Monitoramento Ambiental , Fatores Socioeconômicos
20.
Science ; 308(5718): 74-8, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15802597

RESUMO

It has been hypothesized that changes in the marine biological pump caused a major portion of the glacial reduction of atmospheric carbon dioxide by 80 to 100 parts per million through increased iron fertilization of marine plankton, increased ocean nutrient content or utilization, or shifts in dominant plankton types. We analyze sedimentary records of marine productivity at the peak and the middle of the last glacial cycle and show that neither changes in nutrient utilization in the Southern Ocean nor shifts in plankton dominance explain the CO2 drawdown. Iron fertilization and associated mechanisms can be responsible for no more than half the observed drawdown.


Assuntos
Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Plâncton/fisiologia , Água do Mar , Atmosfera , Carbonatos/metabolismo , Clima , Sedimentos Geológicos , Ferro/análise , Biologia Marinha , Oceanos e Mares , Chuva , Água do Mar/química , Ácido Silícico/metabolismo , Dióxido de Silício/análise , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...