Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(4): e0250655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33905437

RESUMO

This study describes the fecal microbiota from piglets reared in different living environments during the weaning transition, and presents the characteristics of microbiota associated with good growth of piglets after weaning. Fecal samples were collected pre- (d26) and post-weaning (d35) from 288 male piglets in 16 conventional indoor commercial farms located in the West of France. The changes one week after weaning on the most abundant microbial families was roughly the same in all farms: alpha diversity increased, the relative abundance of Bacteroidaceae (-61%), Christensenellaceae (-35%), Enterobacteriaceae (-42%), and Clostridiaceae (-32%) decreased, while the relative abundance of Prevotellaceae (+143%) and Lachnospiraceae (+21%) increased. Among all the collected samples, four enterotypes that were ubiquitous in all farms were identified. They could be discriminated by their respective relative abundances of Prevotella, Faecalibacterium, Roseburia, and Lachnospira, and likely corresponded to a gradual maturational shift from pre- to post-weaning microbiota. The rearing environment influenced the frequency of enterotypes, as well as the relative abundance of 6 families at d26 (including Christensenellaceae and Lactobacillaceae), and of 21 families at d35. In all farms, piglets showing the highest relative growth rate during the first three weeks after weaning, which were characterized as more robust, had a higher relative abundance of Bacteroidetes, a lower relative abundance of Proteobacteria, and showed a greater increase in Prevotella, Coprococcus, and Lachnospira in the post-weaning period. This study revealed the presence of ubiquitous enterotypes among the farms of this study, reflecting maturational stages of microbiota from a young suckling to an older cereal-eating profile. Despite significant variation in the microbial profile between farms, piglets whose growth after weaning was less disrupted were, those who had reached the more mature phenotype characterized by Prevotella the fastest.


Assuntos
Ração Animal/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Envelhecimento , Animais , Bacteroidaceae/genética , Bacteroidaceae/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Fazendas , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Masculino , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Suínos , Desmame
2.
Microorganisms ; 7(12)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795103

RESUMO

The present study aimed at investigating the evolution of pigs' fecal microbiota composition from post-weaning to finishing in a longitudinal analysis. The experiment was conducted on 160 Pietrain × (Large White × Landrace) castrated male and female pigs in two replicates. Feces were collected at 52, 99, 119, 140, and 154 days of age for further 16S rRNA sequencing to analyze the microbiota composition. Pig microbiota evolved strongly from 52 to 99 days of age with an increased abundance of Streptococcaceae and a decreased abundance of Lactobacillaceae. During the finishing stage, microbiota kept evolving at a slower rate. To link the community structure to the performances, the fecal samples were clustered into enterotypes sharing a similar bacterial composition. At 52 days, two enterotypes dominated either by Lactobacillus or by Prevotella-Sarcina were identified. They differed from the two enterotypes determined from 99 to 154 days which were dominated either by Lactobacillus or by Turicibacter-Clostridium sensu stricto. During this time period, 75% of the pigs switched enterotypes. The enterotypes were not related to differences in the overall growth or feeding performance. The enterotype definition was time-dependent and seemed to be related to the sex type at 99 days of age.

3.
J Anim Sci ; 97(9): 3845-3858, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31268142

RESUMO

The present study aimed at investigating the impact of heat challenges on gut microbiota composition in growing pigs and its relationship with pigs' performance and thermoregulation responses. From a total of 10 F1 sire families, 558 and 564 backcross Large White × Créole pigs were raised and phenotyped from 11 to 23 wk of age in temperate (TEMP) and in tropical (TROP) climates, respectively. In TEMP, all pigs were subjected to an acute heat challenge (3 wk at 29 °C) from 23 to 26 wk of age. Feces samples were collected at 23 wk of age both in TEMP and TROP climate (TEMP23 and TROP23 samples, respectively) and at 26 wk of age in TEMP climate (TEMP26 samples) for 16S rRNA analyses of fecal microbiota composition. The fecal microbiota composition significantly differed between the 3 environments. Using a generalized linear model on microbiota composition, 182 operational taxonomic units (OTU) and 2 pathways were differentially abundant between TEMP23 and TEMP26, and 1,296 OTU and 20 pathways between TEMP23 and TROP23. Using fecal samples collected at 23 wk of age, pigs raised under the 2 climates were discriminated with 36 OTU using a sparse partial least square discriminant analysis that had a mean classification error-rate of 1.7%. In contrast, pigs in TEMP before the acute heat challenge could be discriminated from the pigs in TEMP after the heat challenge with 32 OTU and 9.3% error rate. The microbiota can be used as biomarker of heat stress exposition. Microbiota composition revealed that pigs were separated into 2 enterotypes. The enterotypes were represented in both climates. Whatever the climate, animals belonging to the Turicibacter-Sarcina-Clostridium sensu stricto dominated enterotype were 3.3 kg heavier (P < 0.05) at 11 wk of age than those belonging to the Lactobacillus-dominated enterotype. This latter enterotype was related to a 0.3 °C lower skin temperature (P < 0.05) at 23 wk of age. Following the acute heat challenge in TEMP, this enterotype had a less-stable rectal temperature (0.34 vs. 0.25 °C variation between weeks 23 and 24, P < 0.05) without affecting growth performance (P > 0.05). Instability of the enterotypes was observed in 34% of the pigs, switching from an enterotype to another between 23 and 26 wk of age after heat stress. Despite a lower microbial diversity, the Turicibacter-Sarcina-Clostridium sensu stricto dominated enterotype was better adapted to heat stress conditions with lower thermoregulation variations.


Assuntos
Microbioma Gastrointestinal , Suínos/fisiologia , Animais , Biomarcadores/análise , Regulação da Temperatura Corporal , Clima , Fezes/microbiologia , Resposta ao Choque Térmico , Temperatura Alta/efeitos adversos , Fenótipo , Suínos/genética , Suínos/crescimento & desenvolvimento , Suínos/microbiologia
4.
PLoS One ; 13(10): e0206159, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356293

RESUMO

Microbial population in the gastrointestinal tract plays a central role in health and nutrient digestion. The objective of the present study was to investigate the relationships between microbiota and apparent digestibility coefficients with respect to age and diet. Pigs from Large-White, Duroc or Pietrain breeds were raised under the same housing conditions and fed alternately a low-fiber (LF) and a high-fiber diet (HF) during 4 successive 3-week periods. Data collection for digestibility measurements was achieved during the last week of each period. At the end of each period, fecal microbiota was collected for 16S rRNA gene sequencing. The microbiota remained stable across periods whereas digestibility of energy, crude proteins and cell wall components increased. The microbiota was resilient to diet effect and pigs fed the LF diet were discriminated to those fed the HF diet using 31 predicting OTUs with a mean classification error-rate of 3.9%. Clostridiaceae and Turicibacter were negatively correlated whereas Lactobacillus was positively correlated with protein and energy digestibility coefficients in the LF group. In addition, Lachnospiraceae and Prevotella were negatively correlated with cell wall component digestibility. In contrast, no significant correlation was found between microbiota composition and digestibility coefficients when pigs were fed the HF diet. Interestingly, it was also no longer possible to distinguish animals from different breeds once the animals were fed a HF diet, so that the microbiota could only trace the breed origin in the first period and in the LF group. In our experimental conditions, 3 weeks of adaptation to a new diet seems to be sufficient to observe resilience in growing pigs' microbiota. We demonstrated that fecal microbiota can be used to classify pigs according to their dietary treatment. Some bacteria are favorable or unfavorable to digestibility. This suggests that manipulations of bacterial populations can improve digestibility and feed efficiency.


Assuntos
Fibras na Dieta/administração & dosagem , Digestão , Fezes/microbiologia , Microbiota/fisiologia , Nutrientes/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/classificação , Bactérias/genética , Fibras na Dieta/metabolismo , Masculino , Microbiota/genética , Dinâmica Populacional , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...