Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 211: 106398, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34563896

RESUMO

BACKGROUND AND OBJECTIVE: Cloud computing has the ability to offload processing tasks to a remote computing resources. Presently, the majority of biomedical digital signal processing involves a ground-up approach by writing code in a variety of languages. This may reduce the time a researcher or health professional has to process data, while increasing the barrier to entry to those with little or no software development experience. In this study, we aim to provide a service capable of handling and processing biomedical data via a code-free interface. Furthermore, our solution should support multiple file formats and processing languages while saving user inputs for repeated use. METHODS: A web interface via the Python-based Django framework was developed with the potential to shorten the time taken to create an algorithm, encourage code reuse, and democratise digital signal processing tasks for non-technical users using a code-free user interface. A user can upload data, create an algorithm and download the result. Using discrete functions and multi-lingual scripts (e.g. MATLAB or Python), the user can manipulate data rapidly in a repeatable manner. Multiple data file formats are supported by a decision-based file handler and user authentication-based storage allocation method. RESULTS: The proposed system has been demonstrated as effective in handling multiple input data types in various programming languages, including Python and MATLAB. This, in turn, has the potential to reduce currently experienced bottlenecks in cross-platform development of bio-signal processing algorithms. The source code for this system has been made available to encourage reuse. A cloud service for digital signal processing has the ability to reduce the apparent complexity and abstract the need to understand the intricacies of signal processing. CONCLUSION: We have introduced a web-based system capable of reducing the barrier to entry for inexperienced programmers. Furthermore, our system is reproducable and scalable for use in a variety of clinical or research fields.


Assuntos
Computação em Nuvem , Software , Algoritmos , Linguagens de Programação , Processamento de Sinais Assistido por Computador
2.
Inf Retr Boston ; 24(2): 137-173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33758573

RESUMO

The humanities, like many other areas of society, are currently undergoing major changes in the wake of digital transformation. However, in order to make collection of digitised material in this area easily accessible, we often still lack adequate search functionality. For instance, digital archives for textiles offer keyword search, which is fairly well understood, and arrange their content following a certain taxonomy, but search functionality at the level of thread structure is still missing. To facilitate the clustering and search, we introduce an approach for recognising similar weaving patterns based on their structures for textile archives. We first represent textile structures using hypergraphs and extract multisets of k-neighbourhoods describing weaving patterns from these graphs. Then, the resulting multisets are clustered using various distance measures and various clustering algorithms (K-Means for simplicity and hierarchical agglomerative algorithms for precision). We evaluate the different variants of our approach experimentally, showing that this can be implemented efficiently (meaning it has linear complexity), and demonstrate its quality to query and cluster datasets containing large textile samples. As, to the best of our knowledge, this is the first practical approach for explicitly modelling complex and irregular weaving patterns usable for retrieval, we aim at establishing a solid baseline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...