Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7062, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923717

RESUMO

Passively administered monoclonal antibodies (mAbs) given before or after viral infection can prevent or blunt disease. Here, we examine the efficacy of aerosol mAb delivery to prevent infection and disease in rhesus macaques inoculated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant via intranasal and intratracheal routes. SARS-CoV-2 human mAbs or a human mAb directed to respiratory syncytial virus (RSV) are nebulized and delivered using positive airflow via facemask to sedated macaques pre- and post-infection. Nebulized human mAbs are detectable in nasal, oropharyngeal, and bronchoalveolar lavage (BAL) samples. SARS-CoV-2 mAb treatment significantly reduces levels of SARS-CoV-2 viral RNA and infectious virus in the upper and lower respiratory tracts relative to controls. Reductions in lung and BAL virus levels correspond to reduced BAL inflammatory cytokines and lung pathology. Aerosolized antibody therapy for SARS-CoV-2 could be effective for reducing viral burden and limiting disease severity.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Macaca mulatta , COVID-19/patologia , Aerossóis e Gotículas Respiratórios , Pulmão/patologia , Anticorpos Antivirais , Replicação Viral , Anticorpos Monoclonais
2.
Appl Microbiol Biotechnol ; 103(18): 7751-7765, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31388727

RESUMO

The emergence of life-threatening methicillin-resistant Staphylococcus aureus (MRSA) has led to increased interest in the use of bacteriophages as an alternative therapy to antibiotics. The success of phage therapy is greatly dependent on the selected phage possessing a wide host range. This study describes phage ɸMR003 isolated from sewage influent at a municipal wastewater treatment plant in Tokyo, Japan. ɸMR003 could infect 97% of 104 healthcare- and community-associated MRSA strains tested, compared with 73% for phage ɸSA012, which has a broad host range against bovine mastitis S. aureus. Genome analysis revealed that ɸMR003 belongs to the genus Silviavirus which has not been studied extensively. ɸMR003 recognizes and binds to wall teichoic acid (WTA) of S. aureus during infection. In silico comparisons of the genomes of ɸMR003 and ɸSA012 revealed that ORF117 and ORF119 of ɸMR003 are homologous to the putative receptor-binding proteins ORF103 and ORF105 of ɸSA012, with amino acid similarities of 75% and 72%, respectively. ORF104, which is an N-acetylglucosaminidase found in the ɸMR003 tail, may facilitate phage's infection onto the WTA-null S. aureus RN4220. The differences in tail and baseplate proteins may be key contributing factors to the different host specificities of ɸMR003 and ɸSA012. ɸMR003 showed strong adsorptivity, but not infectivity, against S. aureus SA003, which may be influenced by the bacterium's restriction modification system. This study expands our knowledge of the genomic diversity and host specificity of Silviavirus, which is a potential phage therapy candidate for MRSA infections.


Assuntos
Genoma Viral , Especificidade de Hospedeiro , Staphylococcus aureus Resistente à Meticilina/virologia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/fisiologia , Variação Genética , Humanos , Terapia por Fagos , Esgotos/virologia , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/isolamento & purificação , Ácidos Teicoicos/metabolismo , Tóquio , Ligação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...