Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Oceans ; 124(12): 9338-9363, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32064221

RESUMO

Since the 1980-1990s, international research efforts have augmented our knowledge of the physical and chemical properties of the Arctic Ocean water masses, and recent studies have documented changes. Understanding the processes responsible for these changes is necessary to be able to forecast the local and global consequences of these property evolutions on climate. The present work investigates the distributions of geochemical tracers of particle fluxes and circulation in the Amerasian Basin and their temporal evolution over the last three decades (from stations visited between 1983 and 2015). Profiles of 230-thorium (230Th) and 231-protactinium (231Pa) concentrations and neodymium isotopes (expressed as εNd) measured in the Amerasian Basin prior to 2000 are compared to a new, post-2000s data set. The comparison shows a large scale decrease in dissolved 230Th and 231Pa concentrations, suggesting intensification of scavenging by particle flux, especially in coastal areas. Higher productivity and sediment resuspension from the shelves appear responsible for the concentration decrease along the margins. In the basin interior, increased lateral exchanges with the boundary circulation also contribute to the decrease in concentration. This study illustrates how dissolved 230Th and 231Pa, with εNd support, can provide unique insights not only into changes in particle flux but also into the evolution of ocean circulation and mixing.

2.
Appl Spectrosc ; 71(4): 600-626, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28374610

RESUMO

Obtaining quantitative chemical information using laser-induced breakdown spectroscopy is challenging due to the variability in the bulk composition of geological materials. Chemical matrix effects caused by this variability produce changes in the peak area that are not proportional to the changes in minor element concentration. Therefore the use of univariate calibrations to predict trace element concentrations in geological samples is plagued by a high degree of uncertainty. This work evaluated the accuracy of univariate minor element predictions as a function of the composition of the major element matrices of the samples and examined the factors that limit the prediction accuracy of univariate calibrations. Five different sample matrices were doped with 10-85 000 ppm Cr, Mn, Ni, Zn, and Co and then independently measured in 175 mixtures by X-ray fluorescence, inductively coupled plasma atomic emission spectrometry, and laser-induced breakdown spectroscopy, the latter at three different laser energies (1.9, 2.8, and 3.7 mJ). Univariate prediction models for minor element concentrations were created using varying combinations of dopants, matrices, normalization/no normalization, and energy density; the model accuracies were evaluated using root mean square prediction errors and leave-one-out cross-validation. The results showed the superiority of using normalization for predictions of minor elements when the predicted sample and those in the training set had matrices with similar SiO2 contents. Normalization also mitigates differences in spectra arising from laser/sample coupling effects and the use of different energy densities. Prediction of minor elements in matrices that are dissimilar to those in the training set can increase the uncertainty of prediction by an order of magnitude. Overall, the quality of a univariate calibration is primarily determined by the availability of a persistent, measurable peak with a favorable transition probability that has little to no interference from neighboring peaks in the spectra of both the unknown and those used to train it.

3.
Vaccine ; 24(14): 2506-13, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16417953

RESUMO

Hepatitis B core antigen (HBc or HBcAg) self-assembles into capsid particles and is extremely immunogenic. HBc has been extensively studied for its production in various expression systems and for the use of HBc particles for high-density, immunogenic presentation of foreign epitopes. Here we reported the high-level transient expression of HBc in plant leaf and its immunogenicity in mice. By using a novel plant viral expression system, HBc was produced in Nicotiana benthamiana leaves at levels up to 7.14% of total soluble protein (TSP) or 2.38 milligrams HBc per gram of fresh weight at 7 days post-infection (dpi). Plant-derived HBc (p-HBc) assembled into virus-like particles (VLPs) as revealed by sucrose gradients and electron microscopy. Partially purified p-HBc stimulated strong serum antibody responses in mice as Escherichia coli-derived HBc upon intraperitoneal (i.p.) injection. Furthermore, mice immunized mucosally (orally and intranasally) with p-HBc in the absence of adjuvants also developed HBc-specific serum IgG as well as intestinal IgA. Taken together, our results indicate the potential usefulness of p-HBc-VLP as a carrier for immunogenic presentation and mucosal delivery of foreign epitopes.


Assuntos
Antígenos do Núcleo do Vírus da Hepatite B/biossíntese , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/química , Animais , Formação de Anticorpos , Anticorpos Anti-Hepatite B/biossíntese , Antígenos do Núcleo do Vírus da Hepatite B/genética , Vacinas contra Hepatite B/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Folhas de Planta/genética , Folhas de Planta/metabolismo , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...