Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 6(14): 2816-21, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26266867

RESUMO

Correlated measurements of fluorescence and topography were performed for individual single-walled carbon nanotubes (SWNTs) on quartz using epifluorescence confocal microscopy and atomic force microscopy (AFM). Surprisingly, only ~11% of all SWNTs in DNA-wrapped samples were found to be highly emissive on quartz, suggesting that the ensemble fluorescence quantum yield is low because only a small population of SWNTs fluoresces strongly. Qualitatively similar conclusions were obtained from control studies using a sodium cholate surfactant system. To accommodate AFM measurements, excess surfactant was removed from the substrate. Though individual SWNTs on nonrinsed and rinsed surfaces displayed differences in fluorescence intensities and line widths, arising from the influence of the local environment on individual SWNT optical measurements, photoluminescence data from both samples displayed consistent trends.

2.
ACS Nano ; 3(8): 2265-73, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19585997

RESUMO

The dramatic local electric-field enhancement property of Ag nanoparticles was used as the basis to significantly increase the signal output of a novel label-free (or "self-labeled") fluorescence-based DNA detection system. In response to identical amounts of analyte, nanostructured Ag substrates provided a posthybridization fluorescent sensor response over 10-fold larger than the response from planar Au substrates. Detection performance strongly depended upon the Ag substrate roughness. Consistent with work by others on metal-enhanced fluorescence, fluorescence intensity also depended strongly on the distance between the fluorophore and the Ag substrate surface. Adjusting the surface roughness, amount of the Ag deposited on the surface, and the DNA probe length allowed for production of an optimized response. In addition to constituting a novel label-free DNA sensor, we anticipate that these structures will provide a unique platform for testing concepts in plasmonics.


Assuntos
DNA/análise , Ouro/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais , DNA/ultraestrutura , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...