Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Ecol ; 37(1): 13-25, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37056633

RESUMO

Current global challenges call for a rigorously predictive ecology. Our understanding of ecological strategies, imputed through suites of measurable functional traits, comes from decades of work that largely focussed on plants. However, a key question is whether plant ecological strategies resemble those of other organisms.Among animals, ants have long been recognised to possess similarities with plants: as (largely) central place foragers. For example, individual ant workers play similar foraging roles to plant leaves and roots and are similarly expendable. Frameworks that aim to understand plant ecological strategies through key functional traits, such as the 'leaf economics spectrum', offer the potential for significant parallels with ant ecological strategies.Here, we explore these parallels across several proposed ecological strategy dimensions, including an 'economic spectrum', propagule size-number trade-offs, apparency-defence trade-offs, resource acquisition trade-offs and stress-tolerance trade-offs. We also highlight where ecological strategies may differ between plants and ants. Furthermore, we consider how these strategies play out among the different modules of eusocial organisms, where selective forces act on the worker and reproductive castes, as well as the colony.Finally, we suggest future directions for ecological strategy research, including highlighting the availability of data and traits that may be more difficult to measure, but should receive more attention in future to better understand the ecological strategies of ants. The unique biology of eusocial organisms provides an unrivalled opportunity to bridge the gap in our understanding of ecological strategies in plants and animals and we hope that this perspective will ignite further interest. Read the free Plain Language Summary for this article on the Journal blog.

2.
J Anim Ecol ; 92(3): 538-551, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36622247

RESUMO

Climatic gradients such as latitude and elevation are considered primary drivers of global biogeography. Yet, alongside these macro-gradients, the vertical space and structure generated by terrestrial plants form comparable climatic gradients but at a fraction of the distance. These vertical gradients provide a spectrum of ecological space for species to occur and coexist, increasing biodiversity. Furthermore, vertical gradients can serve as pathways for evolutionary adaptation of species traits, leading to a range of ecological specialisations. In this review, we explore the ecological evidence supporting the proposition that the vertical gradient serves as an engine driving the ecology and evolution of species and shaping larger biogeographical patterns in space and time akin to elevation and latitude. Focusing on vertebrate and invertebrate taxa, we synthesised how ecological patterns within the vertical dimension shape species composition, distribution and biotic interactions. We identify three key ecological mechanisms associated with species traits that facilitate persistence within the vertical environment and draw on empirical examples from the literature to explore these processes. Looking forward, we propose that the vertical dimension provides an excellent study template to explore timely ecological and evolutionary questions. We encourage future research to also consider how the vertical dimension will influence the resilience and response of animal taxa to global change.


Assuntos
Biodiversidade , Ecossistema , Animais , Dimensão Vertical , Plantas , Aclimatação
3.
Ecology ; 103(1): e03549, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618920

RESUMO

Determining how species thermal limits correlate with climate is important for understanding biogeographic patterns and assessing vulnerability to climate change. Such analyses need to consider thermal gradients at multiple spatial scales. Here we relate thermal traits of rainforest ants to microclimate conditions from ground to canopy (microgeographic scale) along an elevation gradient (mesogeographic scale) and calculate warming tolerance to assess climate change vulnerability in the Australian Wet Tropics Bioregion. We test the thermal adaptation and thermal niche asymmetry hypotheses to explain interspecific patterns of thermal tolerance at these two spatial scales. We tested cold tolerance (CTmin ), heat tolerance (CTmax ), and calculated thermal tolerance range (CTrange ), using ramping assays for 74 colonies of 40 ant species collected from terrestrial and arboreal habitats at lowland and upland elevation sites and recorded microclimatic conditions for one year. Within sites, arboreal ants were exposed to hotter microclimates and on average had a 4.2°C (95% CI: 2.7-5.6°C) higher CTmax and 5.3°C (95% CI: 3.5-7°C) broader CTrange than ground-dwelling ants. This pattern was consistent across the elevation gradient, whether it be the hotter lowlands or the cooler uplands. Across elevation, upland ants could tolerate significantly colder temperatures than lowland ants, whereas the change in CTmax was less pronounced, and CTrange did not change over elevation. Differential exposure to microclimates, due to localized niche preferences, drives divergence in CTmax , while environmental temperatures along the elevation gradient drive divergence in CTmin . Our results suggest that both processes of thermal adaptation and thermal niche asymmetry are at play, depending on the spatial scale of observation, and we discuss potential mechanisms underlying these patterns. Despite the broad thermal tolerance range of arboreal rainforest ants, lowland arboreal ants had the lowest warming tolerance and may be most vulnerable to climate change.


Assuntos
Formigas , Termotolerância , Animais , Austrália , Floresta Úmida , Temperatura , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...