Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 23(29): 292201, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21715953

RESUMO

The formation of mounded surfaces in epitaxial growth is attributed to the presence of barriers against interlayer diffusion in the terrace edges, known as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth using an ES barrier explicitly dependent on the step height. Our model has an intrinsic topological step barrier even in the absence of an explicit ES barrier. We show that mounded morphologies can be obtained even for a small barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma equation, is observed in the absence of an explicit step barrier. The mounded surfaces are described by a super-roughness dynamical scaling characterized by locally smooth (facetted) surfaces and a global roughness exponent α > 1. The thin film limit is featured by surfaces with self-assembled three-dimensional structures having an aspect ratio (height/width) that may increase or decrease with temperature depending on the strength of the step barrier.

2.
J Phys Condens Matter ; 17(1): 27-32, 2005 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21690665

RESUMO

Cadmium telluride films were grown on glass substrates using the hot wall epitaxy (HWE) technique. The samples were polycrystalline with a preferential (111) orientation. Scanning electron micrographs reveal a grain size between 0.1 and 0.5 µm. The surface morphology of the samples was studied by measuring the roughness profile using a stylus profiler. The roughness as a function of growth time and scale size were investigated to determine the growth and roughness exponents, ß and α, respectively. From the results we can conclude that the growth surface has a self-affine character with a roughness exponent α equal to 0.69 ± 0.03 and almost independent of growth time. The growth exponent ß was equal to 0.38 ± 0.06. These values agree with that determined previously for CdTe(111) films grown on GaAs(100).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...