Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(52): e202214335, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36307376

RESUMO

Magnetoelectric coupling is achieved near room temperature in a spin crossover FeII molecule-based compound, [Fe(1bpp)2 ](BF4 )2 . Large atomic displacements resulting from Jahn-Teller distortions induce a change in the molecule dipole moment when switching between high-spin and low-spin states leading to a step-wise change in the electric polarization and dielectric constant. For temperatures in the region of bistability, the changes in magnetic and electrical properties are induced with a remarkably low magnetic field of 3 T. This result represents a successful expansion of magnetoelectric spin crossovers towards ambient conditions. Moreover, the observed 0.3-0.4 mC m-2 changes in the H-induced electric polarization suggest that the high strength of the coupling obtained via this route is accessible not just at cryogenic temperatures but also near room temperature, a feature that is especially appealing in the light of practical applications.

2.
ACS Sustain Chem Eng ; 8(37): 13973-13983, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-38434216

RESUMO

The variability of chemical, physical, and mechanical properties of lignocellulosic biomass feedstocks has a major impact on the efficiency of biomass processing and conversion to fuels and chemicals. Storage conditions represent a key source of variability that may contribute to biomass quality variations from the time of harvest until delivery to the biorefinery. In some cases, substantial microbial degradation can take place during storage. In this work, we investigate how degradation during storage affects the surface texture, surface energy, and porosity of different corn stover anatomical fractions (e.g., leaf, stalk, and cob). Understanding any potential changes in surface properties is important because interparticle interactions during bioprocessing cause aggregation and blockages that lead to at least process inefficiency and at most complete equipment failure. The surface roughness and texture parameters of corn stover with variable degrees of microbial degradation were calculated directly from stereomicroscopy and scanning electron microscopy micrographs. Surface energy and porosity were measured by inverse gas chromatography. The results show differing trends in the impact of increasing biological heating and degradation depending on the specific corn stover tissue type that was analyzed. These results also indicate that biomass surface properties are scale-dependent and that the scale, which is most industrially relevant, may depend on the specific unit operation within the biorefinery being considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...