Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 9(19): 6875-6885, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35284199

RESUMO

Twenty-one green solvents, including glycerol-derived ethers, and their eutectic mixtures with two renewable ammonium salts, were used for the straightforward synthesis, stabilization, and immobilization of palladium nanoparticles (Pd NPs). The nature of the solvent allows tuning of the characteristics and properties of resulting catalytic systems in terms of particle size and morphology, stability, reactivity, and recoverability. Pd NPs immobilized in glycerol-based solvents were applied in the catalytic hydrogenation of alkenes, alkynes, and carbonyl compounds, as well as in the selective semihydrogenation of alkynes to alkenes. The optimal experimental parameters and the influence on the reactivity of the physicochemical properties of solvent, mainly the viscosity, were studied. Moreover, the most active and recoverable catalytic system, Pd NPs/N00Cl-100, was fully characterized both in the liquid phase and in the solid state, and its deactivation upon recovery was analyzed.

2.
RSC Adv ; 11(39): 24312-24319, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479057

RESUMO

The ß-fructofuranosidase from the yeast Schwanniomyces occidentalis (Ffase) produces potential prebiotic fructooligosaccharides (FOS) by self-transfructosylation of sucrose, being one of the highest known producers of 6-kestose. The use of Green Solvents (GS) in biocatalysis has emerged as a sustainable alternative to conventional organic media for improving product yields and generating new molecules. In this work, the Ffase hydrolytic and transfructosylating activity was analysed using different GS, including biosolvents and ionic liquids. Among them, 11 were compatible for the net synthesis of FOS. Besides, two glycerol derivatives improved the yield of total FOS. Interestingly, polyols ethylene glycol and glycerol were found to be efficient alternative fructosyl-acceptors, both substantially decreasing the sucrose fructosylation. The main transfer product of the reaction with glycerol was a 62 g L-1 isomeric mixture of 1-O and 2-O-ß-d-fructofuranosylglycerol, representing 95% of all chemicals generated by transfructosylation. Unexpectedly, the non-terminal 2-O fructo-conjugate was the major molecule catalysed during the process, while the 1-O isomer was the minor one. This fact made Ffase the first known enzyme from yeast showing this catalytic ability. Thus, novel fructosylated compounds with potential applications in food, cosmetics, and pharmaceutical fields have been obtained in this work, increasing the biotechnological interest of Ffase with innocuous GS.

3.
Chem Commun (Camb) ; 56(52): 7143-7146, 2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32462150

RESUMO

A recent proposal attributes the origin of hydrotropy to the water-mediated aggregation of hydrotrope molecules around the solute. Experimental evidence for this phenomenon is reported for the first time in this work, using 1H-NMR. A new computational technique to quantify apolarity is introduced and is used to show that apolarity of both solute and hydrotrope is the driving force of hydrotropy.

4.
Chem Sci ; 11(44): 12009-12020, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34123216

RESUMO

Enzymes acting over glyceryl ethers are scarce in living cells, and consequently biocatalytic transformations of these molecules are rare despite their interest for industrial chemistry. In this work, we have engineered and immobilised a glycerol dehydrogenase from Bacillus stearothermophilus (BsGlyDH) to accept a battery of alkyl/aryl glyceryl monoethers and catalyse their enantioselective oxidation to yield the corresponding 3-alkoxy/aryloxy-1-hydroxyacetones. QM/MM computational studies decipher the key role of D123 in the oxidation catalytic mechanism, and reveal that this enzyme is highly enantioselective towards S-isomers (ee > 99%). Through structure-guided site-selective mutagenesis, we find that the mutation L252A sculpts the active site to accommodate a productive configuration of 3-monoalkyl glycerols. This mutation enhances the k cat 163-fold towards 3-ethoxypropan-1,2-diol, resulting in a specific activity similar to the one found for the wild-type towards glycerol. Furthermore, we immobilised the L252A variant to intensify the process, demonstrating the reusability and increasing the operational stability of the resulting heterogeneous biocatalyst. Finally, we manage to integrate this immobilised enzyme into a one-pot chemoenzymatic process to convert glycidol and ethanol into 3-ethoxy-1-hydroxyacetone and (R)-3-ethoxypropan-1,2-diol, without affecting the oxidation activity. These results thus expand the uses of engineered glycerol dehydrogenases in applied biocatalysis for the kinetic resolution of glycerol ethers and the manufacturing of substituted hydroxyacetones.

5.
Molecules ; 23(11)2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404134

RESUMO

We present an efficient and green methodology for the synthesis of glycerol monoethers, starting from glycidol and different alcohols, by means of heterogeneous acid catalysis. A scope of Brønsted and Lewis acid catalysts were applied to the benchmark reaction of glycidol and methanol. The selected catalysts were cationic exchangers, such as Nafion NR50, Dowex 50WX2, Amberlyst 15 and K10-Montmorillonite, both in their protonic form and exchanged with Al(III), Zn(II) and Fe(III). Thus, total conversions were reached in short times by using 1 and 5% mol catalyst loading and room temperature, without the need for excess glycidol or the presence of a solvent. Finally, these conditions and the best catalysts were successfully applied to the reaction of glycidol with several alcohols such as butanol or isopropanol.


Assuntos
Ácidos/química , Compostos de Epóxi/síntese química , Glicerol/síntese química , Propanóis/síntese química , Solventes/química , Catálise , Compostos de Epóxi/química , Glicerol/química , Propanóis/química
6.
Phys Chem Chem Phys ; 19(41): 28302-28312, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29034391

RESUMO

In this work we report the preparation of mixtures of several alkyl glyceryl ethers, as hydrogen bond donor compounds, with two ammonium salts, choline chloride and N,N,N-triethyl-2,3-dihydroxypropan-1-aminium chloride. The stability of the mixtures at different molar ratios and temperatures has been evaluated in order to determine the formation of low melting mixtures. Liquid and stable mixtures have been characterized and their physico-chemical properties such as density, viscosity, refractive index, conductivity and surface tension have been measured in the temperature range of 293.15 K to 343.15 K. Comparison of the mixtures prepared herein with the ones containing glycerol and choline chloride evidences the possibility of tuning the physico-chemical properties by changing the substitution pattern in the hydrogen bond donor compound or in the ammonium salt, thus broadening the scope of application of these mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...