Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 24(5): 1457-68, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25378553

RESUMO

Developmentally regulated alternative splicing produces 'neonatal' and 'adult' isoforms of four Na(+) channels in human brain, NaV1.1, NaV1.2, NaV1.3 and NaV1.6. Heterologously expressed 'neonatal' NaV1.2 channels are less excitable than 'adult' channels; however, functional importance of this difference is unknown. We hypothesized that the 'neonatal' NaV1.2 may reduce neuronal excitability and have a seizure-protective role during early brain development. To test this hypothesis, we generated NaV1.2(adult) mice expressing only the 'adult' NaV1.2, and compared the firing properties of pyramidal cortical neurons, as well as seizure susceptibility, between the NaV1.2(adult) and wild-type (WT) mice at postnatal day 3 (P3), when the 'neonatal' isoform represents 65% of the WT NaV1.2. We show significant increases in action potential firing in NaV1.2(adult) neurons and in seizure susceptibility of NaV1.2(adult) mice, supporting our hypothesis. At postnatal day 15 (P15), when 17% of the WT NaV1.2 is 'neonatal', the firing properties of NaV1.2(adult) and WT neurons converged. However, inhibitory postsynaptic currents in NaV1.2(adult) neurons were larger and the expression level of Scn2a mRNA was 24% lower compared with the WT. The enhanced seizure susceptibility of the NaV1.2(adult) mice persisted into adult age. The adult NaV1.2(adult) mice also exhibited greater risk-taking behaviour. Overall, our data reveal a significant impact of 'neonatal' NaV1.2 on neuronal excitability, seizure susceptibility and behaviour and may contribute to our understanding of NaV1.2 roles in health and diseases such as epilepsy and autism.


Assuntos
Processamento Alternativo , Comportamento Animal , Predisposição Genética para Doença/genética , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Convulsões/genética , Potenciais de Ação , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Modelos Animais de Doenças , Éxons , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Neurônios/citologia , Neurônios/metabolismo , Pentilenotetrazol/efeitos adversos , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
J Clin Invest ; 120(8): 2661-71, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20628201

RESUMO

Febrile seizures are a common childhood seizure disorder and a defining feature of genetic epilepsy with febrile seizures plus (GEFS+), a syndrome frequently associated with Na+ channel mutations. Here, we describe the creation of a knockin mouse heterozygous for the C121W mutation of the beta1 Na+ channel accessory subunit seen in patients with GEFS+. Heterozygous mice with increased core temperature displayed behavioral arrest and were more susceptible to thermal challenge than wild-type mice. Wild-type beta1 was most concentrated in the membrane of axon initial segments (AIS) of pyramidal neurons, while the beta1(C121W) mutant subunit was excluded from AIS membranes. In addition, AIS function, an indicator of neuronal excitability, was substantially enhanced in hippocampal pyramidal neurons of the heterozygous mouse specifically at higher temperatures. Computational modeling predicted that this enhanced excitability was caused by hyperpolarized voltage activation of AIS Na+ channels. This heat-sensitive increased neuronal excitability presumably contributed to the heightened thermal seizure susceptibility and epileptiform discharges seen in patients and mice with beta1(C121W) subunits. We therefore conclude that Na+ channel beta1 subunits modulate AIS excitability and that epilepsy can arise if this modulation is impaired.


Assuntos
Axônios/fisiologia , Mutação , Convulsões Febris/genética , Canais de Sódio/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Subunidades Proteicas , Canais de Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...