Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Microbiome ; 5(1): 34, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461095

RESUMO

BACKGROUND: Artificial rearing system, commonly used in prolific sheep breeds, is associated to increased mortality and morbidity rates before weaning, which might be linked to perturbations in digestive tract maturation, including microbiota colonization. This study evaluated the effect of rearing mode (mothered or artificially reared) on the establishment of the rumen and intestinal microbiome of lambs from birth to weaning. We also measured immunological and zootechnical parameters to assess lambs' growth and health. GIT anatomy as well as rumen and intestinal epithelium gene expression were also analysed on weaned animals to assess possible long-term effects of the rearing practice. RESULTS: Total VFA concentrations were higher in mothered lambs at 2 months of age, while artificially-reared lambs had lower average daily gain, a more degraded sanitary status and lower serum IgG concentration in the early growth phase. Metataxonomic analysis revealed higher richness of bacterial and eukaryote populations in mothered vs. artificially-reared lambs in both Rumen and Feces. Beta diversity analysis indicated an evolution of rumen and fecal bacterial communities in mothered lambs with age, not observed in artificially-reared lambs. Important functional microorganisms such as the cellulolytic bacterium Fibrobacter succinogenes and rumen protozoa did not establish correctly before weaning in artificially-reared lambs. Enterobacteriaceae and Escherichia coli were dominant in the fecal microbiota of mothered lambs, but main E. coli virulence genes were not found differential between the two groups, suggesting they are commensal bacteria which could exert a protective effect against pathogens. The fecal microbiota of artificially-reared lambs had a high proportion of lactic acid bacteria taxa. No difference was observed in mucosa gene expression in the two lamb groups after weaning. CONCLUSIONS: The rearing mode influences gastrointestinal microbiota and health-associated parameters in offspring in early life: rumen maturation was impaired in artificially-reared lambs which also presented altered sanitary status and higher risk of gut dysbiosis. The first month of age is thus a critical period where the gastrointestinal tract environment and microbiota are particularly unstable and special care should be taken in the management of artificially fed newborn ruminants.

2.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34882529

RESUMO

Targeting small parts of the 16S rDNA phylogenetic marker by metabarcoding reveals microorganisms of interest but cannot achieve a taxonomic resolution at the species level, precluding further precise characterizations. To identify species behind operational taxonomic units (OTUs) of interest, even in the rare biosphere, we developed an innovative strategy using gene capture by hybridization. From three OTU sequences detected upon polyphenol supplementation and belonging to the rare biosphere of the human gut microbiota, we revealed 59 nearly full-length 16S rRNA genes, highlighting high bacterial diversity hidden behind OTUs while evidencing novel taxa. Inside each OTU, revealed 16S rDNA sequences could be highly distant from each other with similarities down to 85 %. We identified one new family belonging to the order Clostridiales, 39 new genera and 52 novel species. Related bacteria potentially involved in polyphenol degradation have also been identified through genome mining and our results suggest that the human gut microbiota could be much more diverse than previously thought.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , DNA Bacteriano/genética , DNA Ribossômico/genética , Mineração de Dados , Microbioma Gastrointestinal , Humanos , Filogenia , Polifenóis/metabolismo
3.
J Fungi (Basel) ; 7(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199914

RESUMO

BACKGROUND: In ruminants, physiological and nutritional changes occur peripartum. We investigated if gastro-intestinal microbiota, rumen metabolism and antioxidant status were affected around parturition and what could be the impact of a daily supplementation of a live yeast additive in late gestating ewes. METHODS: Rumen, feces and blood samples were collected from 2 groups of 14 ewes one month and a few days before parturition, and 2 weeks postpartum. RESULTS: In the control ewes close to parturition, slight changes in the ruminal microbiota were observed, with a decrease in the concentration F. succinogenes and in the relative abundance of the Fibrobacteres phylum. Moreover, a decrease in the alpha-diversity of the bacterial community and a reduced relative abundance of the Fibrobacteres phylum were observed in their feces. Control ewes were prone to oxidative stress, as shown by an increase in malondialdehyde (MDA) concentration, a lower total antioxidant status, and higher glutathione peroxidase (GPx) activity in the blood. In the yeast supplemented ewes, most of the microbial changes observed in the control group were alleviated. An increase in GPx activity, and a significant decrease in MDA concentration were measured. CONCLUSIONS: The live yeast used in this study could stabilize gastro-intestinal microbiota and reduce oxidative stress close to parturition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...