Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Anal ; 11(6): 691-698, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34377564

RESUMO

Coronavirus disease 2019 is a serious disease that causes acute respiratory syndrome and negatively affects the central nervous system. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) crosses the blood-brain barrier due to the spike (S) protein on the surface of the viral particles. Thus, it is important to develop compounds that not only have an inhibitory effect but are also capable of completely deactivating the S protein function. This study describes the purposeful modification of porphyrins and proposes compounds, asymmetrically hetaryl-substituted porphyrins with benzothiazole, benzoxazole, and N-methylbenzimidazole residues, to deactivate the S protein functions. Molecular docking of SARS-CoV-2 proteins with hetaryl-substituted porphyrins showed that the viral S protein, nucleocapsid (N) protein, and non-structural protein 13 (nsp13) exhibited the highest binding affinity. Hetaryl-substituted porphyrins form strong complexes (13-14 kcal/mol) with the receptor-binding domain of the S protein, while the distance from the porphyrins to the receptor-binding motif (RBM) does not exceed 20 Å; therefore, RBM can be oxidized by 1O2, which is generated by porphyrin. Hetaryl-substituted porphyrins interact with the N protein in the serine/arginine-rich region, and a number of vulnerable amino acid residues are located in the photooxidation zone. This damage complicates the packaging of viral RNA into new virions. High-energy binding of hetaryl-substituted porphyrins with the N- and C-terminal domains of nsp13 was observed. This binding blocks the action of nsp13 as an enzyme of exoribonuclease and methyltransferase, thereby preventing RNA replication and processing. A procedure for the synthesis of hetaryl-substituted porphyrins was developed, new compounds were obtained, their structures were identified, and their photocatalytic properties were studied.

2.
J Photochem Photobiol B ; 211: 112008, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32932136

RESUMO

Recently, a new type of spin labels based on photoexcited triplet molecules was proposed for nanometer scale distance measurements by pulsed dipolar electron paramagnetic resonance (PD EPR). However, such molecules are also actively used within biological complexes as photosensitizers for photodynamic therapy (PDT) of cancer. Up to date, the idea of using the photoexcited triplets simultaneously as PDT agents and as spin labels for PD EPR has never been employed. In this work, we demonstrate that PD EPR in conjunction with other methods provides valuable information on the structure and function of PDT candidate complexes, exemplified here with porphyrins bound to human serum albumin (HSA). Two distinct porphyrins with different properties were used: amphiphilic meso-tetrakis(4-hydroxyphenyl)porphyrin (mTHPP) and water soluble cationic meso-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4); HSA was singly nitroxide-labeled to provide a second tag for PD EPR measurements. We found that TMPyP4 locates in a cavity at the center of the four-helix bundle of HSA subdomain IB, close to the interface with solvent, thus being readily accessible to oxygen. As a result, the photolysis of the complex leads to photooxidation of HSA by generated singlet oxygen and causes structural perturbation of the protein. Contrary, in case of mTHPP porphyrin, the binding occurs at the proton-rich pocket of HSA subdomain IIIA, where the access of oxygen to a photosensitizer is hindered. Structural data of PD EPR were supported by other EPR techniques, laser flash photolysis and protein photocleavage studies. Therefore, pulsed EPR on complexes of proteins with photoexcited triplets is a promising approach for gaining structural and functional insights into such PDT agents.


Assuntos
Antineoplásicos/química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Albumina Sérica Humana/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Luz , Oxidantes Fotoquímicos/química , Fotoquimioterapia , Oxigênio Singlete/química , Solubilidade , Solventes/química , Marcadores de Spin
3.
Int J Biol Macromol ; 137: 1153-1160, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31295483

RESUMO

The complexation processes of chitosan with cobalt(II)tetrasulfophthalocyanine (CoPc) and copper(II)tetrasulfophthalocyanine (CuPc) were studied calorimetrically in solution. It was established that CoPc forms two types of complexes with chitosan, while CuPc forms a single type of complex with chitosan, in which copper(II)tetrasulfophthalocyanine is in dimerized form. The complexes are thermodynamically stable, which was allowed to study them in a solid form by different methods. Joint application of DSC and TG/DTG methods allowed us to identify the temperature intervals for evaporation of physically and chemically bounded water and thermal decomposition of chitosan and its complexes. The glass transition temperature of chitosan (110.8 °C) is greater than the glass transition temperature of the complexes with CuPc (74.7 °C) and CoPc (71.2 °C). Using SEM images and X-ray data of heated, unheated chitosan and its complexes, it was shown that the complexes are predominantly amorphous. Heating of chitosan and its leads to increasing of amorphous phase. Modification of chitosan by phthalocyanines leads to decreasing of thermal stability of complexes insignificantly.


Assuntos
Quitosana/química , Indóis/química , Ácidos Sulfônicos/química , Temperatura , Estabilidade de Medicamentos , Isoindóis
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 215: 153-157, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30825864

RESUMO

In this paper, the results of a spectral and thermochemical study of the DNA polyplex formation with chitosan and the effect of ethidium bromide polyplexes, sodium dodecyl sulfate, n-octyltrimethyl ammonium bromide, poly(4-styrenesulfonic acid), and heparin on the stability of the complexes are considered. It has been established that chitosan forms thermodynamically stable complexes with ethidium bromide (EtBr), in which there exists one monomer unit of chitosan for two ethidium bromide ones. The interaction of ethidium bromide with chitosan leads to a charge exchange of the polymer surface. The impact of chitosan on the intercalated DNA-EtBr complex conditions a release of EtBr with a polyplex formation. The process of polyplex formation in the presence of ethidium bromide proceeds endothermically, and in its absence the reaction is exothermic. The polyplex particles formed from DNA after release of EtBr are larger and have a smaller charge, as compared to the polyplex particles obtained without ethidium bromide. It has been found that anionic compounds cause the degradation of polyplexes, and it can prove to be a significant obstacle for using chitosan polyplexes in transfection, since in the presence of heparin in the bloodstream, the complexes will break down before reaching the target.


Assuntos
Quitosana/química , DNA/química , Etídio/análogos & derivados , Etídio/química , Íons/química , Polímeros/química , Análise Espectral
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 199: 235-241, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29625380

RESUMO

The interaction of tetracationic porphyrins with DNA was studied using UV-Vis absorption, fluorescence spectroscopy and viscometry, and the particle sizes were determined. Аs cationic porphyrins, two isomer porphyrins, 3,3',3″,3‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP3) and 4,4',4″,4‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP4), were studied. They differ in the position of NCH3+ group in phenyl ring of the porphyrins and hence, in degree of freedom of rotation of the phenyl rings about the central macrocycle. It was found that intercalated complexes are formed at DNA/porphyrin molar ratios (R) of 2.2 and 3.9 for TMPyP3 и TMPyP4, respectively. Decreasing R up to 0.4 and 0.8 for TMPyP3 и TMPyP4, respectively, leads mainly to formation of outside complexes due to π-π stacking between the porphyrin chromophores interacting electrostatically with phosphate framework of DNA. Each type of the obtained complexes was characterized using Scatchard approach. It was ascertained that the affinity of TMPyP4 to DNA is stronger than TMPyP3, meanwhile the wedge effect of the latter is higher. The differences between the porphyrin isomers become more evident at irradiation of their complexes with DNA. It was established that irradiation of the intercalated complexes results in DNA fragmentation. In the case of TMPyP4, DNA fragments of different size are formed. The irradiation of the outside DNA/porphyrin complexes leads to cleavage of DNA (TMPyP3 and TMPyP4) and partial destruction of the complex due to photolysis of the porphyrin (TMPyP3).


Assuntos
Clivagem do DNA , DNA/metabolismo , Substâncias Intercalantes/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Porfirinas/metabolismo , Cátions , DNA/química , Humanos , Substâncias Intercalantes/química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...