Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(4): 1138-1143, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33476153

RESUMO

The characterization of oxidized oxygen states through high-efficiency mapping of resonant inelastic X-ray scattering (mRIXS) has become a crucial approach for studying the oxygen redox activities in high-energy battery cathodes. However, this approach has been recently challenged due to the concern of irradiation damage. Here we revisited a typical Li-rich electrode, Li1.144Ni0.136Mn0.544Co0.136O2, in both lithiated and delithiated states and evaluated the X-ray irradiation effect in the lengthy mRIXS experiments. Our results show that irradiation cannot introduce any oxidized oxygen feature, and the features of oxidized oxygen are weakened with a high X-ray dose. The results confirm again that mRIXS detects the intrinsic oxidized oxygen state in battery electrodes. However, the distinct irradiation effects in different systems imply that irradiation could selectively target the least stable elemental or chemical states, which should be analyzed with caution in the study of active chemical states.

2.
J Phys Chem Lett ; 11(6): 2106-2112, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32101006

RESUMO

Sensitivity to the "bulk" oxygen core orbital makes hard X-ray photoelectron spectroscopy (HAXPES) an appealing technique for studying oxygen redox candidates. Various studies have reported an additional O 1s peak (530-531 eV) at high voltages, which has been considered a direct signature of the bulk oxygen redox process. Here, we find the emergence of a 530.4 eV O 1s HAXPES peak for three model cathodes-Li2MnO3, Li-rich NMC, and NMC 442-that shows no clear link to oxygen redox. Instead, the 530.4 eV peak for these three systems is attributed to transition metal reduction and electrolyte decomposition in the near-surface region. Claims of oxygen redox relying on photoelectron spectroscopy must explicitly account for the surface sensitivity of this technique and the extent of the cathode degradation layer.

3.
Sci Rep ; 9(1): 17720, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776363

RESUMO

Aluminum is a common dopant across oxide cathodes for improving the bulk and cathode-electrolyte interface (CEI) stability. Aluminum in the bulk is known to enhance structural and thermal stability, yet the exact influence of aluminum at the CEI remains unclear. To address this, we utilized a combination of X-ray photoelectron and absorption spectroscopy to identify aluminum surface environments and extent of transition metal reduction for Ni-rich LiNi0.8Co0.2-yAlyO2 (0%, 5%, or 20% Al) layered oxide cathodes tested at 4.75 V under thermal stress (60 °C). For these tests, we compared the conventional LiPF6 salt with the more thermally stable LiBF4 salt. The CEI layers are inherently different between these two electrolyte salts, particularly for the highest level of Al-doping (20%) where a thicker (thinner) CEI layer is found for LiPF6 (LiBF4). Focusing on the aluminum environment, we reveal the type of surface aluminum species are dependent on the electrolyte salt, as Al-O-F- and Al-F-like species form when using LiPF6 and LiBF4, respectively. In both cases, we find cathode-electrolyte reactions drive the formation of a protective Al-F-like barrier at the CEI in Al-doped oxide cathodes.

4.
Langmuir ; 33(37): 9333-9353, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28595010

RESUMO

Enabling practical utilization of layered R3̅m positive electrodes near full delithiation requires an enhanced understanding of the complex electrode-electrolyte interactions that often induce failure. Using Li[Ni0.8Co0.15Al0.05]O2 (NCA) as a model layered compound, the chemical and structural stability in a strenuous thermal and electrochemical environment was explored. Operando microcalorimetry and electrochemical impedance spectroscopy identified a fingerprint for a structural decomposition and transition-metal dissolution reaction that occurs on the positive electrode at full delithiation. Surface-sensitive characterization techniques, including X-ray absorption spectroscopy and high-resolution transmission electron microscopy, measured a structural and morphological transformation of the surface and subsurface regions of NCA. Despite the bulk structural integrity being maintained, NCA surface degradation at a high state of charge induces excessive transition-metal dissolution and significant positive electrode impedance development, resulting in a rapid decrease in electrochemical performance. Additionally, the impact of electrolyte salt, positive electrode surface area, and surface Li2CO3 content on the magnitude and character of the dissolution reaction was studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...