Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Diagn ; 23(5): 589-598, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33631351

RESUMO

Diagnostic laboratories gather phenotypic data through requisition forms, but there is no consensus as to which data are essential for variant interpretation. The ClinGen Cardiomyopathy Variant Curation Expert Panel defined a phenotypic data set for hypertrophic cardiomyopathy (HCM) variant interpretation, with the goal of standardizing requisition forms. Phenotypic data elements listed on requisition forms from nine leading cardiomyopathy testing laboratories were compiled to assess divergence in data collection. A pilot of 50 HCM cases was implemented to determine the feasibility of harmonizing data collection. Laboratory directors were surveyed to gauge potential for adoption of a minimal data set. Wide divergence was observed in the phenotypic data fields in requisition forms. The 50-case pilot showed that although demographics and assertion of a clinical diagnosis of HCM had 86% to 98% completion, specific phenotypic features, such as degree of left ventricular hypertrophy, ejection fraction, and suspected syndromic disease, were completed only 24% to 44% of the time. Nine data elements were deemed essential for variant classification by the expert panel. Participating laboratories unanimously expressed a willingness to adopt these data elements in their requisition forms. This study demonstrates the value of comparing and sharing best practices through an expert group, such as the ClinGen Program, to enhance variant interpretation, providing a foundation for leveraging cumulative case-level data in public databases and ultimately improving patient care.


Assuntos
Cardiomiopatia Hipertrófica/genética , Bases de Dados Genéticas , Testes Genéticos/métodos , Variação Genética , Genoma Humano , Genômica/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos
2.
Genet Epidemiol ; 43(1): 63-81, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30298529

RESUMO

The Electronic Medical Records and Genomics (eMERGE) network is a network of medical centers with electronic medical records linked to existing biorepository samples for genomic discovery and genomic medicine research. The network sought to unify the genetic results from 78 Illumina and Affymetrix genotype array batches from 12 contributing medical centers for joint association analysis of 83,717 human participants. In this report, we describe the imputation of eMERGE results and methods to create the unified imputed merged set of genome-wide variant genotype data. We imputed the data using the Michigan Imputation Server, which provides a missing single-nucleotide variant genotype imputation service using the minimac3 imputation algorithm with the Haplotype Reference Consortium genotype reference set. We describe the quality control and filtering steps used in the generation of this data set and suggest generalizable quality thresholds for imputation and phenotype association studies. To test the merged imputed genotype set, we replicated a previously reported chromosome 6 HLA-B herpes zoster (shingles) association and discovered a novel zoster-associated loci in an epigenetic binding site near the terminus of chromosome 3 (3p29).


Assuntos
Registros Eletrônicos de Saúde , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Herpes Zoster/genética , Algoritmos , População Negra/genética , Cromossomos Humanos/genética , Feminino , Haplótipos/genética , Homozigoto , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , População Branca/genética
3.
Mol Genet Genomic Med ; 4(2): 143-51, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27066507

RESUMO

BACKGROUND: Diagnostic testing for genetic cardiomyopathies has undergone dramatic changes in the last decade with next generation sequencing (NGS) expanding the number of genes that can be interrogated simultaneously. Exon resolution copy number analysis is increasingly incorporated into routine diagnostic testing via cytogenomic arrays and more recently via NGS. While NGS is an attractive option for laboratories that have no access to array platforms, its higher false positive rate requires weighing the added cost incurred by orthogonal confirmation against the magnitude of the increase in diagnostic yield. Although copy number variants (CNVs) have been reported in various cardiomyopathy genes, their contribution has not been systematically studied. METHODS: We performed single exon resolution NGS-based deletion/duplication analysis for up to 46 cardiomyopathy genes in >1400 individuals with cardiomyopathies including HCM, DCM, ARVC, RCM, and LVNC. RESULTS AND CONCLUSION: Clinically significant deletions and duplications were identified in only 9 of 1425 (0.63%) individuals. The majority of those (6/9) represented intragenic events. We conclude that the added benefit of exon level deletion/duplication analysis is low for currently known cardiomyopathy genes and may not outweigh the increased cost and complexity of incorporating it into routine diagnostic testing for these disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...