Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 150(2): 931-43, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9755221

RESUMO

A novel method using the nonparametric bootstrap is proposed for testing whether a quantitative trait locus (QTL) at one chromosomal position could explain effects on two separate traits. If the single-QTL hypothesis is accepted, pleiotropy could explain the effect on two traits. If it is rejected, then the effects on two traits are due to linked QTLs. The method can be used in conjunction with several QTL mapping methods as long as they provide a straightforward estimate of the number of QTLs detectable from the data set. A selection step was introduced in the bootstrap procedure to reduce the conservativeness of the test of close linkage vs. pleiotropy, so that the erroneous rejection of the null hypothesis of pleiotropy only happens at a frequency equal to the nominal type I error risk specified by the user. The approach was assessed using computer simulations and proved to be relatively unbiased and robust over the range of genetic situations tested. An example of its application on a real data set from a saline stress experiment performed on a recombinant population of wheat (Triticum aestivum L. ) doubled haploid lines is also provided.


Assuntos
Ligação Genética , Modelos Genéticos , Característica Quantitativa Herdável , Simulação por Computador , Marcadores Genéticos , Cloreto de Sódio/farmacologia , Estatísticas não Paramétricas , Sulfatos/farmacologia , Triticum/efeitos dos fármacos , Triticum/genética
2.
Genetics ; 148(1): 525-35, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9475761

RESUMO

Several nonparametric bootstrap methods are tested to obtain better confidence intervals for the quantitative trait loci (QTL) positions, i.e., with minimal width and unbiased coverage probability. Two selective resampling schemes are proposed as a means of conditioning the bootstrap on the number of genetic factors in our model inferred from the original data. The selection is based on criteria related to the estimated number of genetic factors, and only the retained bootstrapped samples will contribute a value to the empirically estimated distribution of the QTL position estimate. These schemes are compared with a nonselective scheme across a range of simple configurations of one QTL on a one-chromosome genome. In particular, the effect of the chromosome length and the relative position of the QTL are examined for a given experimental power, which determines the confidence interval size. With the test protocol used, it appears that the selective resampling schemes are either unbiased or least biased when the QTL is situated near the middle of the chromosome. When the QTL is closer to one end, the likelihood curve of its position along the chromosome becomes truncated, and the nonselective scheme then performs better inasmuch as the percentage of estimated confidence intervals that actually contain the real QTL's position is closer to expectation. The nonselective method, however, produces larger confidence intervals. Hence, we advocate use of the selective methods, regardless of the QTL position along the chromosome (to reduce confidence interval sizes), but we leave the problem open as to how the method should be altered to take into account the bias of the original estimate of the QTL's position.


Assuntos
Mapeamento Cromossômico/métodos , Modelos Genéticos , Característica Quantitativa Herdável , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...