Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 303: 114117, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838381

RESUMO

Membrane distillation is a well-established technology for non-volatile components retention, but the removal of volatile and semi-volatile substances in trace concentration, such as phenols derivates commonly found in surface waters, requires further comprehension. In this context, the direct contact membrane distillation (DCMD) performance was assessed for the retention of fifteen phenolic compounds in surface water by different operating conditions of temperature (40, 50, and 60 °C), feed concentration (3, 5, 7, and 10 µg L-1), and permeate recovery rate (30, 50 and 70%). Kruskal Wallis confirmed a significant difference (p < 0.05) between the global removal of phenolic compounds at different temperatures. The increase in temperature led to a reduction in all compound's removal. As expected, a positive correlation (rSpearman>0.8) between the compounds' volatility and their losses was observed. Regarding the feed concentration and the recovery rate, there was no statistical difference between the removal values obtained for the phenolic compounds. This indicates the DCMD strength for that application. However, a trend for flux decay was noticed as the recovery rate (RR) increased, confirmed by temporal trend analysis and Mann-Kendall tests, although the flux decay was relatively low (J/J0 = 0.89). Aiming for a greater removal and to avoid a reduction in process performance, it is recommended to work with 40 °C as feed temperature and a RR prior to the flux decay (RR<30%). Nonetheless, the technology was efficient and did not compromise the permeate quality with >90% efficiency in pollutants removal, even for higher temperatures and RR.


Assuntos
Destilação , Purificação da Água , Membranas , Membranas Artificiais , Fenóis
2.
Waste Manag ; 132: 105-114, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329924

RESUMO

This study investigated the best way to combine nanofiltration (NF) and Fenton with membrane bioreactor inoculated with Saccharomyces cerevisiae (MBRy) for the treatment of landfill leachate, aiming at compliance with legislation and water reuse. Firstly, the permeate from MBRy was treated by Fenton process followed by NF (MBRy - Fenton - NF). Another alternative evaluated was the polishment of MBRy permeate by NF and treatment of NF concentrate by Fenton process (MBRy - NF - Fenton(concentrate)). COD removal in the Fenton step was optimized according to central composite design (CCD) and 85.5% removal was obtained at pH = 3, Fe2+:H2O2 molar ratio = 1:9.81 and C:H2O2 molar ratio = 1:1.14. Increased toxicity was observed with the Fenton application (EC50 = 2.45%). The NF showed the best performance treating the MBRy permeate. High permeate flux (8.9 ± 1.6 L h-1 m-2) and ion rejection (82 ± 4.2%), and low membrane fouling was observed in this condition. Although both NF permeate presented potential for reuse, the final COD concentration was lower in the MBRy - Fenton effluent (88 mg L-1). The Fenton application for the NF concentrate was able to remove 87.24% of COD. With a preliminary economic analysis, it was verified that the MBRy - NF - Fenton(concentrate) combination is the most advantageous due to the lower chemical reagent and membrane area requirements. Thus, this route presents itself as an alternative for landfill leachate reclamation.


Assuntos
Poluentes Químicos da Água , Reatores Biológicos , Peróxido de Hidrogênio , Oxirredução , Saccharomyces cerevisiae , Poluentes Químicos da Água/análise
3.
Environ Pollut ; 268(Pt A): 115782, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120340

RESUMO

This study provided a monitoring of phenolic compounds occurrence in a river and in its treated water by a conventional water treatment plant (WTP) throughout a year-period, in Minas Gerais - Brazil. Furthermore, the environmental risk (hazard quotient - HQ), the human health risk (margin of exposure - MOE), and the cancer risk were calculated for the compounds. The results indicated that sixteen out of the seventeen investigated phenolic compounds were detected at some point during the sampling campaign. The most frequent compounds in the raw surface water were 2,3,4-trichlorophenol (234TCP), 2,4-dimethylphenol (24DMP), and 4-nitrophenol (4NP), whereas in treated water were 4NP and bisphenol A (BPA). In addition, the highest total concentration values were corelated to the months in which there was less precipitation, demonstrating that the presence of this micropollutants may be subject to seasonality. From the treated water results, it was not possible to state the efficiency of the conventional WTP in eliminating the phenols, since in some samples the phenolic compounds were totally removed and in others their increase or formation occurred. Regarding to the risk assessments, most of the evaluated compounds were considered highly toxic to some trophic level and posed a significant human health risk. Additionally, the risk reduction of phenolics using conventional WTP was low. The sixteen phenols contamination in surface and drinking waters appears to be subject to seasonality. Besides that, an alarming risk for environment and human health was identified.


Assuntos
Poluentes Químicos da Água , Compostos Benzidrílicos/análise , Brasil , Monitoramento Ambiental , Humanos , Fenóis/análise , Medição de Risco , Rios , Estações do Ano , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 250: 773-781, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31039472

RESUMO

The presence of pharmaceuticals in aquatic environments has become a major issue of concern for scientific community, since there is a lack of information about risks and impacts to the environment and public health. In the context of Brazil, many cities do not have Wastewater Treatment Plants (WWTPs) and domestic sewage is dumped directly into the water bodies, aggravating the problem. Thus, the present study aimed to evaluate the presence of 28 prescribed pharmaceuticals from different therapeutic classes in six full-scale Drinking Water Treatment Plants (DWTPs) in Minas Gerais state. Samples were collected in twelve field campaigns from August 2016 to August 2017 and water quality were monitored. Analytical methodology was based on solid phase extraction (C18 cartridge) followed by High Performance Liquid Chromatography (Prominence DGU/20A3 - Shimadzu) coupled to Mass Spectrometry (micrOTOF-QII - Bruker). Considering the 28 pharmaceuticals analyzed, 18 were detected in the surface water source at concentrations ranging from Method Quantification Limit (MQL) to 11,960 ng/L. In drinking water, the concentration of the 11 pharmaceuticals detected ranged from

Assuntos
Monitoramento Ambiental/métodos , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Brasil , Cidades , Água Potável/química , Estações do Ano , Esgotos/química , Águas Residuárias/química , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...