Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16919, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805649

RESUMO

Type 2 diabetes (T2D) and its complications can have debilitating, sometimes fatal consequences for afflicted individuals. The disease can be difficult to control, and therapeutic strategies to prevent T2D-induced tissue and organ damage are needed. Here we describe the results of administering a potent and selective inhibitor of Protein Kinase C (PKC) family members PKCα and PKCß, Cmpd 1, in the ZSF1 obese rat model of hyperphagia-induced, obesity-driven T2D. Although our initial intent was to evaluate the effect of PKCα/ß inhibition on renal damage in this model setting, Cmpd 1 unexpectedly caused a marked reduction in the hyperphagic response of ZSF1 obese animals. This halted renal function decline but did so indirectly and indistinguishably from a pair feeding comparator group. However, above and beyond this food intake effect, Cmpd 1 lowered overall animal body weights, reduced liver vacuolation, and reduced inguinal adipose tissue (iWAT) mass, inflammation, and adipocyte size. Taken together, Cmpd 1 had strong effects on multiple disease parameters in this obesity-driven rodent model of T2D. Further evaluation for potential translation of PKCα/ß inhibition to T2D and obesity in humans is warranted.


Assuntos
Adiposidade , Diabetes Mellitus Tipo 2 , Humanos , Ratos , Animais , Adiposidade/fisiologia , Proteína Quinase C-alfa , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/complicações , Obesidade/tratamento farmacológico , Hiperfagia/complicações , Hiperfagia/tratamento farmacológico , Rim/fisiologia
2.
Front Mol Biosci ; 10: 1160851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577751

RESUMO

Background: Tissue fibrosis is a major healthcare burden that affects various organs in the body for which no effective treatments exist. An underlying, emerging theme across organs and tissue types at early stages of fibrosis is the activation of pericytes and/or fibroblasts in the perivascular space. In hepatic tissue, it is well known that liver sinusoidal endothelial cells (EC) help maintain the quiescence of stellate cells, but whether this phenomenon holds true for other endothelial and perivascular cell types is not well studied. Methods: The goal of this work was to develop an organ-on-chip microvascular model to study the effect of EC co-culture on the activation of perivascular cells perturbed by the pro-fibrotic factor TGFß1. A high-throughput microfluidic platform, PREDICT96, that was capable of imparting physiologically relevant fluid shear stress on the cultured endothelium was utilized. Results: We first studied the activation response of several perivascular cell types and selected a cell source, human dermal fibroblasts, that exhibited medium-level activation in response to TGFß1. We also demonstrated that the PREDICT96 high flow pump triggered changes in select shear-responsive factors in human EC. We then found that the activation response of fibroblasts was significantly blunted in co-culture with EC compared to fibroblast mono-cultures. Subsequent studies with conditioned media demonstrated that EC-secreted factors play at least a partial role in suppressing the activation response. A Luminex panel and single cell RNA-sequencing study provided additional insight into potential EC-derived factors that could influence fibroblast activation. Conclusion: Overall, our findings showed that EC can reduce myofibroblast activation of perivascular cells in response to TGFß1. Further exploration of EC-derived factors as potential therapeutic targets in fibrosis is warranted.

3.
Sci Immunol ; 8(82): eadd8945, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37027478

RESUMO

Macrophages are central orchestrators of the tissue response to injury, with distinct macrophage activation states playing key roles in fibrosis progression and resolution. Identifying key macrophage populations found in human fibrotic tissues could lead to new treatments for fibrosis. Here, we used human liver and lung single-cell RNA sequencing datasets to identify a subset of CD9+TREM2+ macrophages that express SPP1, GPNMB, FABP5, and CD63. In both human and murine hepatic and pulmonary fibrosis, these macrophages were enriched at the outside edges of scarring and adjacent to activated mesenchymal cells. Neutrophils expressing MMP9, which participates in the activation of TGF-ß1, and the type 3 cytokines GM-CSF and IL-17A coclustered with these macrophages. In vitro, GM-CSF, IL-17A, and TGF-ß1 drive the differentiation of human monocytes into macrophages expressing scar-associated markers. Such differentiated cells could degrade collagen IV but not collagen I and promote TGF-ß1-induced collagen I deposition by activated mesenchymal cells. In murine models blocking GM-CSF, IL-17A or TGF-ß1 reduced scar-associated macrophage expansion and hepatic or pulmonary fibrosis. Our work identifies a highly specific macrophage population to which we assign a profibrotic role across species and tissues. It further provides a strategy for unbiased discovery, triage, and preclinical validation of therapeutic targets based on this fibrogenic macrophage population.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Interleucina-17/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Cicatriz , Macrófagos/patologia , Inflamação/patologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Glicoproteínas de Membrana , Receptores Imunológicos
4.
Sci Rep ; 11(1): 12225, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108507

RESUMO

Microphysiological organ-on-chip models offer the potential to improve the prediction of drug safety and efficacy through recapitulation of human physiological responses. The importance of including multiple cell types within tissue models has been well documented. However, the study of cell interactions in vitro can be limited by complexity of the tissue model and throughput of current culture systems. Here, we describe the development of a co-culture microvascular model and relevant assays in a high-throughput thermoplastic organ-on-chip platform, PREDICT96. The system consists of 96 arrayed bilayer microfluidic devices containing retinal microvascular endothelial cells and pericytes cultured on opposing sides of a microporous membrane. Compatibility of the PREDICT96 platform with a variety of quantifiable and scalable assays, including macromolecular permeability, image-based screening, Luminex, and qPCR, is demonstrated. In addition, the bilayer design of the devices allows for channel- or cell type-specific readouts, such as cytokine profiles and gene expression. The microvascular model was responsive to perturbations including barrier disruption, inflammatory stimulation, and fluid shear stress, and our results corroborated the improved robustness of co-culture over endothelial mono-cultures. We anticipate the PREDICT96 platform and adapted assays will be suitable for other complex tissues, including applications to disease models and drug discovery.


Assuntos
Comunicação Celular , Técnicas de Cocultura/métodos , Derme/metabolismo , Endotélio Vascular/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Pericitos/metabolismo , Retina/metabolismo , Permeabilidade da Membrana Celular , Células Cultivadas , Derme/citologia , Endotélio Vascular/citologia , Humanos , Pericitos/citologia , Retina/citologia
5.
Cell Mol Gastroenterol Hepatol ; 10(4): 829-851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32526482

RESUMO

BACKGROUND & AIMS: Disordered metabolism, steatosis, hepatic inflammation, and fibrosis contribute to the pathogenesis of nonalcoholic steatohepatitis (NASH). Acetyl-CoA carboxylase (ACC) catalyzes the first committed step in de novo lipogenesis (DNL) and modulates mitochondrial fatty acid oxidation. Increased hepatic DNL flux and reduced fatty acid oxidation are hypothesized to contribute to steatosis. Some proinflammatory cells also show increased dependency on DNL, suggesting that ACC may regulate aspects of the inflammatory response in NASH. PF-05221304 is an orally bioavailable, liver-directed ACC1/2 inhibitor. The present studies sought to evaluate the effects of PF-05221304 on NASH pathogenic factors in experimental model systems. METHODS: The effects of PF-05221304 on lipid metabolism, steatosis, inflammation, and fibrogenesis were investigated in both primary human-derived in vitro systems and in vivo rodent models. RESULTS: PF-05221304 inhibited DNL, stimulated fatty acid oxidation, and reduced triglyceride accumulation in primary human hepatocytes, and reduced DNL and steatosis in Western diet-fed rats in vivo, showing the potential to reduce hepatic lipid accumulation and potentially lipotoxicity. PF-05221304 blocked polarization of human T cells to proinflammatory but not anti-inflammatory T cells, and suppressed activation of primary human stellate cells to myofibroblasts in vitro, showing direct effects on inflammation and fibrogenesis. Consistent with these observations, PF-05221304 also reduced markers of inflammation and fibrosis in the diethylnitrosamine chemical-induced liver injury model and the choline-deficient, high-fat-fed rat model. CONCLUSIONS: The liver-directed dual ACC1/ACC2 inhibitor directly improved multiple nonalcoholic fatty liver disease/NASH pathogenic factors including steatosis, inflammation, and fibrosis in both human-derived in vitro systems and rat models.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Acetil-CoA Carboxilase/metabolismo , Animais , Humanos , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos Sprague-Dawley
6.
Drug Metab Dispos ; 46(11): 1581-1587, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30126862

RESUMO

Intestinal disposition of small molecules involves interplay of drug metabolizing enzymes (DMEs), transporters, and host-microbiome interactions, which has spurred the development of in vitro intestinal models derived from primary tissue sources. Such models have been bioengineered from intestinal crypts, mucosal extracts, induced pluripotent stem cell (iPSC)-derived organoids, and human intestinal tissue. This minireview discusses the utility and limitations of these human-derived models in support of small molecule drug metabolism and disposition. Enteroids from human intestinal crypts, organoids derived from iPSCs using growth factors or small molecule compounds, and enterocytes extracted from mucosal scrapings show key absorptive cell morphology while are limited in quantitative applications due to the lack of accessibility to the apical compartment, the lack of monolayers, or low expression of key DMEs, transporters, and nuclear hormone receptors. Despite morphogenesis to epithelial cells, similar challenges have been reported by more advanced technologies that have explored the impact of flow and mechanical stretch on proliferation and differentiation of Caco-2 cells. Most recently, bioengineered human intestinal epithelial or ileal cells have overcome many of the challenges, as the DME and transporter expression pattern resembles that of native intestinal tissue. Engineering advances may improve such models to support longer-term applications and meet end-user needs. Biochemical characterization and transcriptomic, proteomic, and functional endpoints of emerging novel intestinal models, when referenced to native human tissue, can provide greater confidence and increased utility in drug discovery and development.


Assuntos
Transporte Biológico/fisiologia , Inativação Metabólica/fisiologia , Intestinos/fisiologia , Bibliotecas de Moléculas Pequenas/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Proteínas de Membrana Transportadoras/metabolismo
7.
PLoS One ; 12(7): e0181861, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28746409

RESUMO

ZSF1 rats exhibit spontaneous nephropathy secondary to obesity, hypertension, and diabetes, and have gained interest as a model system with potentially high translational value to progressive human disease. To thoroughly characterize this model, and to better understand how closely it recapitulates human disease, we performed a high resolution longitudinal analysis of renal disease progression in ZSF1 rats spanning from early disease to end stage renal disease. Analyses included metabolic endpoints, renal histology and ultrastructure, evaluation of a urinary biomarker of fibrosis, and transcriptome analysis of glomerular-enriched tissue over the course of disease. Our findings support the translational value of the ZSF1 rat model, and are provided here to assist researchers in the determination of the model's suitability for testing a particular mechanism of interest, the design of therapeutic intervention studies, and the identification of new targets and biomarkers for type 2 diabetic nephropathy.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/genética , Falência Renal Crônica/complicações , Rim/metabolismo , Animais , Análise por Conglomerados , Colágeno/genética , Colágeno/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imuno-Histoquímica , Rim/patologia , Rim/ultraestrutura , Falência Renal Crônica/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Obesidade/complicações , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Biotechniques ; 43(4): 494, 496-500, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18019341

RESUMO

Techniques that allow cells to self-assemble into three-dimensional (3-D) spheroid microtissues provide powerful in vitro models that are becoming increasingly popular--especially in fields such as stem cell research, tissue engineering, and cancer biology. Unfortunately, caveats involving scale, expense, geometry, and practicality have hindered the widespread adoption of these techniques. We present an easy-to-use, inexpensive, and scalable technology for production of complex-shaped, 3-D microtissues. Various primary cells and immortal cell lines were utilized to demonstrate that this technique is applicable to many cell types and highlight differences in their self-assembly phenomena. When seeded onto micromolded, nonadhesive agarose gels, cells settle into recesses, the architectures of which optimize the requisite cell-to-cell interactions for spontaneous self-assembly. With one pipeting step, we were able to create hundreds of uniform spheroids whose size was determined by seeding density. Multicellular tumor spheroids (MCTS) were assembled or grown from single cells, and their proliferation was quantified using a modified 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) assay. Complex-shaped (e.g., honeycomb) microtissues of homogeneous or mixed cell populations can be easily produced, opening new possibilities for 3-D tissue culture.


Assuntos
Materiais Biocompatíveis/química , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Hidrogéis/química , Sefarose/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Adesividade , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...