Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7162, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935704

RESUMO

We present a robust approach to generate a continuously tunable, low phase noise, Hz linewidth and mHz/s stability THz emission in the 0.1 THz to 1.4 THz range. This is achieved by photomixing two commercial telecom, distributed feedback lasers locked by optical-feedback onto a single highly stable V-shaped optical cavity. The phase noise is evaluated up to 1.2 THz, demonstrating Hz-level linewidth. To illustrate the spectral performances and agility of the source, low pressure absorption lines of methanol and water vapors have been recorded up to 1.4 THz. In addition, the hyperfine structure of a water line at 556.9 GHz, obtained by saturation spectroscopy, is also reported, resolving spectral features displaying a full-width at half-maximum of 10 kHz. The present results unambiguously establish the performances of this source for ultra-high resolution molecular physics.

2.
Environ Sci Technol ; 52(18): 10543-10551, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30111096

RESUMO

We present a novel instrument, the Sub-Ocean probe, allowing in situ and continuous measurements of dissolved methane in seawater. It relies on an optical feedback cavity enhanced absorption technique designed for trace gas measurements and coupled to a patent-pending sample extraction method. The considerable advantage of the instrument compared with existing ones lies in its fast response time of the order of 30 s, that makes this probe ideal for fast and continuous 3D-mapping of dissolved methane in water. It could work up to 40 MPa of external pressure, and it provides a large dynamic range, from subnmol of CH4 per liter of seawater to mmol L-1. In this work, we present laboratory calibration of the instrument, intercomparison with standard method and field results on methane detection. The good agreement with the headspace equilibration technique followed by gas-chromatography analysis supports the utility and accuracy of the instrument. A continuous 620-m depth vertical profile in the Mediterranean Sea was obtained within only 10 min, and it indicates background dissolved CH4 values between 1 and 2 nmol L-1 below the pycnocline, similar to previous observations conducted in different ocean settings. It also reveals a methane maximum at around 6 m of depth, that may reflect local production from bacterial transformation of dissolved organic matter.


Assuntos
Metano , Água do Mar , Lasers , Mar Mediterrâneo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...