Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 25(9): 959-67, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16596429

RESUMO

The possibility of rapid validation and functional analysis of nematode resistance genes is a common objective for numerous species and particularly for woody species. In this aim, we developed an Agrobacterium rhizogenes-mediated transformation protocol for Coffea arabica enabling efficient and rapid regeneration of transformed roots from the hypocotyls of germinated zygotic embryos, and the subsequent production of composite plants. The A. rhizogenes strain A4RS proved to be the most virulent. High transformation efficiencies (70%) were obtained using a 2-week co-cultivation period at a temperature of 15-18 degrees C. Using a p35S-gusA-int construct inserted in the pBIN19 binary plasmid, we could estimate that 35% of transformed roots were GUS positive (co-transformed). Using the GUS assay as visual marker, 40% composite plants bearing a branched co-transformed rootstock could be obtained after only 12 weeks without selection with herbicides or antibiotics. Transgenic coffee roots obtained with A. rhizogenes did not exhibit the 'hairy' disturbed phenotype and were morphologically similar to normal roots. PCR analyses demonstrated that all co-transformed roots were positive for the expected rolB and gusA genes. Transformed and non-transformed root systems from both susceptible and resistant varieties were inoculated with Meloidogyne exigua nematode individuals. Inoculation of composite plants from the Caturra susceptible variety resulted in the normal development of nematode larvae. Numbers of extracted nematodes demonstrated that transformed roots retain the resistance/sensibility phenotype of varieties from which they are derived. These results suggest that composite plants constitute a powerful tool for studying nematode resistance genes.


Assuntos
Coffea/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Rhizobium/metabolismo , Transformação Genética , Animais , Coffea/metabolismo , Nematoides , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas , Temperatura
2.
Theor Appl Genet ; 109(6): 1318-27, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15322755

RESUMO

The Ma gene for root-knot nematode (RKN)resistance from Myrobalan plum (Prunus cerasifera L.)confers a complete-spectrum and a heat-stable resistance to Meloidogvne spp., conversely to Mi-I from tomato,which has a more restricted spectrum and a reduced efficiency at high temperature. This gene was identified from a perennial self-incompatible near-wild rootstock species and lies in cosegregation with the SCAR marker SCAFLP2 on the Prunus linkage group 7 in a 2.3 cM interval between the SCAR SCAL19 and SSR pchgms6 markers. We initiated a map-based cloning of Ma and report here the strategy that rapidly led to fine mapping and direct chromosome landing at the locus. Three pairs of bulks, totaling 90 individuals from half-sibling progenies derived from the Ma-heterozygous resistant accession P.2175, were constructed using mapping data, and saturation of the Ma region was performed by bulked segregant analysis (BSA) of 320 AFLP primer pair combinations. The closest three AFLP markers were transformed into codominant SCARs or CAPS designatedSCAFLP3, SCAFLP4 and SCAFLP5. By completing the mapping population up to 1,332 offspring from P.2175,Ma and SCAFLP2 were mapped in a 0.8 cM interval between SCAFLP3 and SCAFLP4. A large-insert bacterial artificial chromosome (BAC) DNA library of P.2175,totaling 30,720 clones with a mean insert size of 145 kb and a 14-15x Prunus haploid genome coverage was constructed and used to land on the Ma spanning interval with few BAC clones. As P.2175 is heterozygous for the gene, we constructed the resistant and susceptible physical contigs by PCR screening of the library with codominant markers. Additional microsatellite markers were then designed from BAC subcloning or BAC end sequencing. In the resistant contig, a single 280 kb BAC clone was shown to carry the Ma gene; this BAC contains two flanking markers on each side of the gene as well as two cosegregating markers. These results should allow future cloning of the Ma gene in this perennial species.


Assuntos
Cromossomos de Plantas/genética , Nematoides/patogenicidade , Prunus/genética , Terminalia/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Primers do DNA , Biblioteca Gênica , Doenças das Plantas/parasitologia , Polimorfismo Genético , Prunus/parasitologia , Terminalia/parasitologia
3.
Theor Appl Genet ; 108(4): 765-73, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14569426

RESUMO

Prunus species express different ranges and levels of resistance to the root-knot nematodes (RKN) Meloidogyne spp. In Myrobalan plum ( Prunus cerasifera), the dominant Ma gene confers a high-level and wide-spectrum resistance to the predominant RKN, Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica and the isolate Meloidogyne sp. Florida which overcomes the resistance of the Amygdalus sources. In Japanese plum ( Prunus salicina), a similar wide-spectrum dominant resistance gene, termed R(jap), has been hypothesized from an intraspecific segregating cross. In peach, two crosses segregating for resistance to both M. incognita and M. arenaria were used to identify single genes that each control both RKN species in the Shalil ( R(Mia557)) and Nemared ( R(MiaNem)) sources. Localisation of these genes was made possible using the RFLP and SSR- saturated reference Prunus map TxE, combined with a BSA approach applied to some of the genes. The Ma1 allele carried by the Myrobalan plum accession P.2175 was localised on the linkage group 7 at an approximate distance of 2 cM from the SSR marker pchgms6. In the Japanese plum accession J.222, the gene R(jap) was mapped at the same position in co-segregation with the SSR markers pchgms6 and CPPCT022. The peach genes R(Mia557) and R(MiaNem), carried by two a priori unrelated resistance sources, were co-localized in a subtelomeric position on linkage group 2. This location was different from the more centromeric position previously proposed by Lu et al. (1999) for the resistance gene Mij to M. incognita and M. javanica in Nemared, near the SSR pchgms1 and the STS EAA/MCAT10. By contrast, R(Mia557) and R(MiaNem) were flanked by STS markers obtained by Yamamoto and Hayashi (2002) for the resistance gene Mia to M. incognita in the Japanese peach source Juseitou. Concordant results for the three independent sources, Shalil, Nemared and Juseitou, suggest that these peach RKN sources share at least one major gene resistance to M. incognita located in this subtelomeric position. We showed that plum and peach genes are independent and, thus, can be pyramided into interspecific hybrid rootstocks based on the plum and peach species.


Assuntos
Mapeamento Cromossômico , Imunidade Inata/genética , Doenças das Plantas/parasitologia , Prunus/genética , Animais , Cruzamentos Genéticos , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Polimorfismo de Fragmento de Restrição , Prunus/parasitologia , Tylenchida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...