Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Morphol ; 285(7): e21749, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982668

RESUMO

Trait functionality can act as a constraint on morphological development. Traits that become vestigialized can exhibit unstable developmental patterns such as fluctuating asymmetry (FA) and variation in populations. We use clearing and staining along with morphometric analyzes to compare FA and allometry of limbs in Western lesser sirens (Siren nettingi) to Ouachita dusky salamanders (Desmognathus brimleyorum). Our results describe new carpal phenotypes and carpal asymmetry in our sample of S. nettingi. However, we found no significant evidence of limb length asymmetry in S. nettingi. The degree of relative limb asymmetry correlates inversely with body size in both of our samples. This work provides strong evidence of increased mesopodal variation within a population of S. nettingi. Our work provides a basis for further study of a broader range of morphological traits across salamanders.


Assuntos
Urodelos , Animais , Urodelos/anatomia & histologia , Tamanho Corporal , Extremidades/anatomia & histologia , Fenótipo , Masculino , Ossos do Carpo/anatomia & histologia , Feminino
2.
Dev Dyn ; 251(6): 934-941, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35443096

RESUMO

Amphibians undergo a variety of post-embryonic transitions (PETr) that are partly governed by thyroid hormone (TH). Transformation into a terrestrial form follows an aquatic larval stage (biphasic) or precedes hatching (direct development). Some salamanders maintain larval characteristics and an aquatic lifestyle into adulthood (paedomorphosis), which obscures the conclusion of their larval period. Paedomorphic axolotls exhibit elevated TH during early development that is concomitant with transcriptional reprogramming and limb emergence. A recent perspective suggested this cryptic TH-based PETr is uncoupled from metamorphosis in paedomorphs and concludes the larval period. This led to their question: "Are paedomorphs actual larvae?". To clarify, paedomorphs are only considered larval in form, even though they possess some actual larval characteristics. However, we strongly agree that events during larval development inform amphibian life cycle evolution. We build upon their perspective by considering the evolution of limb emergence and metamorphosis. Limbless hatchling larval salamanders are generally associated with ponds, while limbed larvae are common to streams and preceded the evolution of direct development. Permian amphibians had limbed larvae, so their PETr was likely uncoupled from metamorphosis, equivalent to most extant biphasic and paedomorphic salamanders. Coupling of these events was likely derived in frogs and direct developing salamanders.


Assuntos
Estágios do Ciclo de Vida , Urodelos , Ambystoma mexicanum , Anfíbios , Animais , Evolução Biológica , Larva , Metamorfose Biológica , Hormônios Tireóideos
3.
Dev Dyn ; 251(6): 957-972, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33991029

RESUMO

Observations on the ontogeny and diversity of salamanders provided some of the earliest evidence that shifts in developmental trajectories have made a substantial contribution to the evolution of animal forms. Since the dawn of evo-devo there have been major advances in understanding developmental mechanisms, phylogenetic relationships, evolutionary models, and an appreciation for the impact of ecology on patterns of development (eco-evo-devo). Molecular phylogenetic analyses have converged on strong support for the majority of branches in the Salamander Tree of Life, which includes 764 described species. Ancestral reconstructions reveal repeated transitions between life cycle modes and ecologies. The salamander fossil record is scant, but key Mesozoic species support the antiquity of life cycle transitions in some families. Colonization of diverse habitats has promoted phenotypic diversification and sometimes convergence when similar environments have been independently invaded. However, unrelated lineages may follow different developmental pathways to arrive at convergent phenotypes. This article summarizes ecological and endocrine-based causes of life cycle transitions in salamanders, as well as consequences to body size, genome size, and skeletal structure. Salamanders offer a rich source of comparisons for understanding how the evolution of developmental patterns has led to phenotypic diversification following shifts to new adaptive zones.


Assuntos
Evolução Biológica , Urodelos , Animais , Fósseis , Estágios do Ciclo de Vida , Filogenia
4.
J Evol Biol ; 32(7): 642-652, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30891861

RESUMO

Patterns of phenotypic evolution can abruptly shift as species move between adaptive zones. Extant salamanders display three distinct life cycle strategies that range from aquatic to terrestrial (biphasic), to fully aquatic (paedomorphic) and to fully terrestrial (direct development). Life cycle variation is associated with changes in body form such as loss of digits, limb reduction or body elongation. However, the relationships among these traits and life cycle strategy remain unresolved. Here, we use a Bayesian modelling approach to test whether life cycle transitions by salamanders have influenced rates, optima and integration of primary locomotory structures (limbs and trunk). We show that paedomorphic salamanders have elevated rates of limb evolution with optima shifted towards smaller size and fewer digits compared to all other salamanders. Rate of hindlimb digit evolution is shown to decrease in a gradient as life cycles become more terrestrial. Paedomorphs have a higher correlation between hindlimb digit loss and increases in vertebral number, as well as reduced correlations between limb lengths. Our results support the idea that terrestrial plantigrade locomotion constrains limb evolution and, when lifted, leads to higher rates of trait diversification and shifts in optima and integration. The basic tetrapod body form of most salamanders and the independent losses of terrestrial life stages provide an important framework for understanding the evolutionary and developmental mechanisms behind major shifts in ecological zones as seen among early tetrapods during their transition from water to land.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Biológica , Ecossistema , Extremidades/anatomia & histologia , Urodelos/genética , Urodelos/fisiologia , Animais , Teorema de Bayes , Extremidades/fisiologia , Estágios do Ciclo de Vida , Locomoção/fisiologia
5.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29343600

RESUMO

Life cycle strategies have evolved extensively throughout the history of metazoans. The expression of disparate life stages within a single ontogeny can present conflicts to trait evolution, and therefore may have played a major role in shaping metazoan forms. However, few studies have examined the consequences of adding or subtracting life stages on patterns of trait evolution. By analysing trait evolution in a clade of closely related salamander lineages we show that shifts in the number of life cycle stages are associated with rapid phenotypic evolution. Specifically, salamanders with an aquatic-only (paedomorphic) life cycle have frequently added vertebrae to their trunk skeleton compared with closely related lineages with a complex aquatic-to-terrestrial (biphasic) life cycle. The rate of vertebral column evolution is also substantially lower in biphasic lineages, which may reflect the functional compromise of a complex cycle. This study demonstrates that the consequences of life cycle evolution can be detected at very fine scales of divergence. Rapid evolutionary responses can result from shifts in selective regimes following changes in life cycle complexity.


Assuntos
Evolução Biológica , Estágios do Ciclo de Vida , Fenótipo , Coluna Vertebral/anatomia & histologia , Urodelos/anatomia & histologia , Animais , Características de História de Vida , Urodelos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...