Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38985422

RESUMO

Microalgae cultivation in wastewater has been widely researched under laboratory conditions as per its potential to couple treatment with biomass production. Currently, only a limited number of published articles consider outdoor and long-term microalgae-bacteria cultivations in real wastewater environmental systems. The scope of this work is to describe microalgal cultivation steps towards high-rate algal pond (HRAP) scalability and identify key parameters that play a major role for biomass productivity under outdoor conditions and long-term cultivations. Reviewed pilot-scale HRAP literature is analysed using multivariate analysis to highlight key productivity parameters within environmental and operational factors. Wastewater treatment analysis indicated that HRAP can effectively remove 90% of NH4+, 70% of COD, and 50% of PO43-. Mean reference values of 210 W m-2 for irradiation, 18 °C for temperature, pH of 8.2, and HRT of 7.7 are derived from pilot-scale cultivations. Microalgae biomass productivity at a large scale is governed by solar radiation and NH4+ concentration, which are more important than retention time variations within investigated studies. Hence, selecting the correct type of location and a minimum of 70 mg L-1 of NH4+ in wastewater will have the greatest effect in microalgae productivity. A high nutrient wastewater content increases final biomass concentrations but not necessarily biomass productivity. Pilot-scale growth rates (~ 0.54 day-1) are half those observed in lab experiments, indicating a scaling-up bottleneck. Microalgae cultivation in wastewater enables a circular bioeconomy framework by unlocking microalgal biomass for the delivery of an array of products.

2.
Bioresour Technol ; 259: 334-342, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29574313

RESUMO

The removal of nutrients by Scenedesmus sp. in a high-rate algal pond, and subsequent algal separation by coagulation-flocculation or flotation with ozone to recover biomolecules, were evaluated. Cultivation of Scenedesmus sp. in wastewater resulted in complete NH3-H removal, plus 93% total nitrogen and 61% orthophosphate removals. Ozone-flotation obtained better water quality results than coagulation-flocculation for most parameters (NH3-N, NTK, nitrate and nitrite) except orthophosphate. Ozone-flotation, also produced the highest recovery of lipids, carbohydrates and proteins which were 0.32 ±â€¯0.03, 0.33 ±â€¯0.025 and 0.58 ±â€¯0.014 mg/mg of biomass, respectively. In contrast, there was a low lipid extraction of 0.21 mg of lipids/mg of biomass and 0.12-0.23 mg of protein/mg of biomass in the coagulation-flocculation process. In terms of biomolecule recovery and water quality, ozone showed better results than coagulation-flocculation.


Assuntos
Floculação , Ozônio , Águas Residuárias , Biomassa , Microalgas , Lagoas , Scenedesmus
3.
Environ Sci Pollut Res Int ; 23(12): 12164-73, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26971515

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is the most detected and concentrated plasticizer in environment and wastewaters, worldwide. In this study, different operating parameters such as current intensity, treatment time, type of anodes, and supporting electrolytes were tested to optimized the electro-oxidation process (EOP) for the removal of DEHP in the presence of methanol as a dissolved organic matter. Among the anodes, the Nb/BDD showed the best degradation rate of DEHP, at low current intensity of 0.2 A after 90 min of treatment time with a percentage of degradation recorded of 81 %, compared to 70 % obtained with the Ti/IrO2-RuO2. Furthermore, due to the combination of direct and indirect oxidation, the removal of DEHP in the presence of 1 g/L Na2SO4 was higher than NaBr, even though the oxidant production of NaBr was 11.7 mmol/L against 3.5 mmol/L recorded in the presence of sulfate at 0.5 A and after 60 min of electrolysis time. Under optimal condition (current intensity = 0.5 A, time = 120 min, using Nb/BDD anode and Na2SO4 as supporting electrolyte), the removal of 87.2 % of DEHP was achieved. The total cost of 0.106 US$/m(3) of treated water was achieved based on economical optimization of reactor with current intensity of 0.2 A and 1 g/L Na2SO4.


Assuntos
Dietilexilftalato/análise , Eletrólise/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Eletrodos , Oxirredução , Sulfatos/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...