Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34679001

RESUMO

A fundamental issue of the characterization of single-chain variable fragments (scFvs), capable of neutralizing scorpion toxins, is their cross-neutralizing ability. This aspect is very important in Mexico because all scorpions dangerous to humans belong to the Centruroides genus, where toxin sequences show high identity. Among toxin-neutralizing antibodies that were generated in a previous study, scFv 10FG2 showed a broad cross-reactivity against several Centruroides toxins, while the one of scFv LR is more limited. Both neutralizing scFvs recognize independent epitopes of the toxins. In the present work, the neutralization capacity of these two scFvs against two medically important toxins of the venom of Centruroides sculpturatus Ewing was evaluated. The results showed that these toxins are recognized by both scFvs with affinities between 1.8 × 10-9 and 6.1 × 10-11 M. For this reason, their ability to neutralize the venom was evaluated in mice, where scFv 10FG2 showed a better protective capacity. A combination of both scFvs at a molar ratio of 1:5:5 (toxins: scFv 10FG2: scFv LR) neutralized the venom without the appearance of any signs of intoxication. These results indicate a complementary activity of these two scFvs during venom neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , Venenos de Escorpião/imunologia , Escorpiões/química , Anticorpos de Cadeia Única/imunologia , Animais , Reações Cruzadas , Feminino , Humanos , Camundongos
2.
Toxins (Basel) ; 11(1)2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634620

RESUMO

The recombinant antibody fragments generated against the toxic components of scorpion venoms are considered a promising alternative for obtaining new antivenoms for therapy. Using directed evolution and site-directed mutagenesis, it was possible to generate a human single-chain antibody fragment with a broad cross-reactivity that retained recognition for its original antigen. This variant is the first antibody fragment that neutralizes the effect of an estimated 13 neurotoxins present in the venom of nine species of Mexican scorpions. This single antibody fragment showed the properties of a polyvalent antivenom. These results represent a significant advance in the development of new antivenoms against scorpion stings, since the number of components would be minimized due to their broad cross-neutralization capacity, while at the same time bypassing animal immunization.


Assuntos
Anticorpos Neutralizantes/imunologia , Neurotoxinas/imunologia , Venenos de Escorpião/imunologia , Anticorpos de Cadeia Única/imunologia , México
3.
J Biol Chem ; 291(4): 1619-1630, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26589800

RESUMO

The current trend of using recombinant antibody fragments in research to develop novel antidotes against scorpion stings has achieved excellent results. The polyclonal character of commercial antivenoms, obtained through the immunization of animals and which contain several neutralizing antibodies that recognize different epitopes on the toxins, guarantees the neutralization of the venoms. To avoid the use of animals, we aimed to develop an equivalent recombinant antivenom composed of a few neutralizing single chain antibody fragments (scFvs) that bind to two different epitopes on the scorpion toxins. In this study, we obtained scFv RU1 derived from scFv C1. RU1 showed a good capacity to neutralize the Cn2 toxin and whole venom of the scorpion Centruroides noxius. Previously, we had produced scFv LR, obtained from a different parental fragment (scFv 3F). LR also showed a similar neutralizing capacity. The simultaneous administration of both scFvs resulted in improved protection, which was translated as a rapid recovery of previously poisoned animals. The crystallographic structure of the ternary complex scFv LR-Cn2-scFv RU1 allowed us to identify the areas of interaction of both scFvs with the toxin, which correspond to non-overlapping sites. The epitope recognized by scFv RU1 seems to be related to a greater efficiency in the neutralization of the whole venom. In addition, the structural analysis of the complex helped us to explain the cross-reactivity of these scFvs and how they neutralize the venom.


Assuntos
Venenos de Escorpião/química , Venenos de Escorpião/imunologia , Escorpiões/imunologia , Anticorpos de Cadeia Única/química , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Cristalografia por Raios X , Dados de Sequência Molecular , Testes de Neutralização , Venenos de Escorpião/genética , Venenos de Escorpião/toxicidade , Escorpiões/química , Alinhamento de Sequência , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
4.
J Mol Biol ; 423(3): 337-50, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22835504

RESUMO

Excellent results regarding improved therapeutic properties have been often obtained through the conversion of a single-chain variable fragment (scFv) into a noncovalent dimeric antibody (diabody) via peptide linker shortening. We utilized this approach to obtain a dimeric version of the human scFv 6009F, which was originally engineered to neutralize the Cn2 toxin of Centruroides noxius scorpion venom. However, some envenoming symptoms remained with diabody 6009F. Diabody 6009F was subjected to directed evolution to obtain a variant capable of eliminating envenoming symptoms. After two rounds of biopanning, diabody D4 was isolated. It exhibited a single mutation (E43G) in framework 2 of the heavy-chain variable domain. Diabody D4 displayed an increase in T(m) (thermal transition midpoint temperature) of 6.3°C compared with its dimeric precursor. The importance of the E43G mutation was tested in the context of the human scFv LR, a highly efficient antibody against Cn2, which was previously generated by our group [Riaño-Umbarila, L., Contreras-Ferrat, G., Olamendi-Portugal, T., Morelos-Juárez, C., Corzo, G., Possani, L. D. and Becerril, B. (2011). J. Biol. Chem.286, 6143-6151]. The new variant, scFv LER, displayed an increase in T(m) of 3.4°C and was capable of neutralizing 2 LD(50) of Cn2 toxin with no detectable symptoms when injected into mice at a 1:1 toxin-to-antibody molar ratio. These results showed that the E43G mutation might increase the therapeutic properties of these antibody fragments. Molecular modeling and dynamics results suggest that the rearrangement of the hydrogen-bonding network near the E43G mutation could explain the improved functional stability and neutralization properties of both the diabody D4 and scFv LER.


Assuntos
Fragmentos Fc das Imunoglobulinas , Cadeias Pesadas de Imunoglobulinas , Venenos de Escorpião/imunologia , Anticorpos de Cadeia Única , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes , Afinidade de Anticorpos , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Camundongos , Simulação de Dinâmica Molecular , Testes de Neutralização , Ligação Proteica/imunologia , Estrutura Terciária de Proteína , Venenos de Escorpião/química , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...