Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 639: 504-515, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29800844

RESUMO

Water scarcity footprinting now has a consensual life cycle impact assessment indicator recommended by the UNEP/SETAC Life Cycle Initiative called AWaRe. It was used in this study to calculate the water scarcity footprint of New Zealand (NZ) milk produced in two contrasting regions; "non-irrigated moderate rainfall" (Waikato) and "irrigated low rainfall" (Canterbury). Two different spatial and temporal resolutions for the inventory flows and characterisation factors (CFs) were tested and compared: country and annual vs. regional and monthly resolution. An inventory of all the consumed water flows was carried out from cradle to farm-gate, i.e. from the production of dairy farm inputs to the milk and meat leaving the dairy farm, including all water uses on-farm such as irrigation water, cow drinking water and cleaning water. The results clearly showed the potential overestimation of a water scarcity footprint when using aggregated CFs. Impacts decreased by 74% (Waikato) and 33% (Canterbury) when regional and monthly CFs were used instead of country and annual CFs. The water scarcity footprint calculated at the regional and monthly resolution was 22 Lworld eq/kg FPCM (Fat Protein Corrected Milk) for Waikato milk, and 1118 Lworld eq/kg FPCM for Canterbury milk. The contribution of background processes dominated for milk from non-irrigated pasture, but was negligible for milk from irrigated pasture, where irrigation dominated the impacts. Results were also compared with the previously widely-used Pfister method (Pfister et al., 2009) and showed very similar ranking in terms of contribution analysis. An endpoint indicator was evaluated and showed damages to human health of 7.66 × 10-5 DALY/kg FPCM for Waikato and 2.05 × 10-3 DALY/kg FPCM for Canterbury, but the relevance of this indicator for food production needs reviewing. To conclude, this study highlighted the importance of using high-resolution CFs rather than aggregated CFs.


Assuntos
Conservação dos Recursos Hídricos/métodos , Indústria de Laticínios/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos , Animais , Bovinos , Indústria de Laticínios/métodos , Fazendas , Feminino , Leite , Nova Zelândia , Água
2.
J Sci Food Agric ; 95(15): 3033-40, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25800825

RESUMO

BACKGROUND: The main source of nitrogen (N) leaching from grazed pastures is animal urine with a high N deposition rate (i.e. per urine patch), particularly between late summer and early winter. Salt is a potential mitigation option as a diuretic to induce greater drinking-water intake, increase urination frequency, decrease urine N concentration and urine N deposition rate, and thereby potentially decrease N leaching. This hypothesis was tested in three phases: a cattle metabolism stall study to examine effects of salt supplementation rate on water consumption, urination frequency and urine N concentration; a grazing trial to assess effects of salt (150 g per heifer per day) on urination frequency; and a lysimeter study on effects of urine N rate on N leaching. RESULTS: Salt supplementation increased cattle water intake. Urination frequency increased by up to 69%, with a similar decrease in urine N deposition rate and no change in individual urination volume. Under field grazing, sensors showed increased urination frequency by 17%. Lysimeter studies showed a proportionally greater decrease in N leaching with decreased urine N rate. Modelling revealed that this could decrease per-hectare N leaching by 10-22%. CONCLUSIONS: Salt supplementation increases cattle water intake and urination frequency, resulting in a lower urine N deposition rate and proportionally greater decrease in urine N leaching. Strategic salt supplementation in autumn/early winter with feed is a practical mitigation option to decrease N leaching in grazed pastures.


Assuntos
Criação de Animais Domésticos/métodos , Pradaria , Gado/metabolismo , Nitrogênio/urina , Cloreto de Sódio na Dieta/farmacologia , Solo/química , Ração Animal , Animais , Bovinos , Indústria de Laticínios , Suplementos Nutricionais , Ingestão de Líquidos/efeitos dos fármacos , Feminino , Humanos , Micção/efeitos dos fármacos
3.
Sci Total Environ ; 465: 107-14, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23374420

RESUMO

Integration of a restricted grazing regime in winter with the use of a nitrification inhibitor can potentially reduce N2O emissions from grazed pasture systems. A three year field study was conducted to compare annual N2O emission rates from a "tight nitrogen" grazed farmlet with those from a control farmlet. The control farmlet was managed under a conventional rotational all-year grazing regime, while the "tight nitrogen" farmlet was under a similar grazing regime, except during winter and early spring seasons when cows grazed for about 6h per day. A nitrification inhibitor (dicyandiamide, DCD) was applied onto the "tight nitrogen" farmlet immediately after grazing through winter and early spring. A chamber technique was used to measure N2O emissions in several paddocks from each farmlet during three contrasting seasons each year. The IPCC (Intergovernmental Panel on Climate Change) inventory methodology was used to estimate CH4 and indirect N2O emissions and the life cycle assessment (LCA) methodology was used to calculate CO2 emissions from the farm systems. The individual and combined effects of restricted grazing and DCD use on N2O emissions were also determined. During the late spring/summer and autumn periods, N2O emission rates were generally similar between the two farmlets. The use of a restricted grazing regime and DCD reduced N2O emissions from the grazed farmlet during the winter/early spring seasons by 43-55%, 64-79% and 45-60% over each of the three years, respectively. The use of restricted grazing and DCD both resulted in a similar reduction in N2O emissions, but there was no significant further reduction from the combination of these technologies. For the three study years, the annual N2O emission rate from the "tight nitrogen" farmlet was 20% lower, on average, than from the control. Total annual greenhouse gas (GHG) emissions, however, were only 5% less in the "tight nitrogen" system.

4.
Rapid Commun Mass Spectrom ; 16(23): 2172-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12442291

RESUMO

Measurements of some of the main internal N-cycling processes in soil were obtained by labelling the inorganic N pool with the stable isotope of nitrogen ((15)N). The (15)N mean pool dilution technique, combined with other field measurements, enabled gross and net N-mineralization rates to be resolved in grassland soils, which had previously either received fertilizer N (F), or had remained unfertilized (U) for many years. The two soils were subdivided into plots that received N at different time intervals (over 3 weeks), prior to (15)N measurements being made. By this novel approach, possible 'priming' effects over time were investigated to try to overcome some of the temporal problems of isotopic labelling of soil N (native plus fertilizer) and to identify possible changes in a range of primary N-transformation processes. The results suggested that an overall stimulation of microbially mediated processes occurred with all N treatments, but there were inconsistencies associated with the release of N, both in the timing and the degree to which different processes responded to the application of fertilizer N. The rates of these processes were, however, within the range of previously reported data and the (15)N measurements were not adversely affected by the differences in N pools created by the treatments. Thus, the mean pool dilution technique was shown to be applicable to agricultural soils, under conditions relevant to grass swards receiving fertilizer. For example, between the U and F treatments, the size of inorganic N pools increased by five-fold and gross rates of mineralization reached 3.5 and 4.8 microg N g(-1) (dry soil) d(-1), respectively, but did not vary greatly with the timing of N applications. A correlation (r(2) = 0.57) was found between soil respiration (which is relatively simple to measure) and net mineralization (which is more time consuming), suggesting that the former might be used as an indicator of the latter. Although this relationship was stronger in previously unfertilized soils, the similarities found with fertilized soils suggest that this approach could be used to obtain information of wider agronomic value and would, therefore, warrant further work under a range of soil conditions.


Assuntos
Fertilizantes/análise , Minerais/metabolismo , Nitrogênio/química , Microbiologia do Solo , Solo/análise , Agricultura , Biodegradação Ambiental , Isótopos de Nitrogênio/análise , Poaceae/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...