Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109385, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510126

RESUMO

Medium- and heavy-duty vehicles are 21% of US transportation greenhouse gas (GHG) emissions and a major source of air pollution. We explore how the total cost of driving (TCD) of zero-emission vehicles (ZEVs), including battery electric vehicles and hydrogen fuel cell electric vehicles (EVs and FCEVs), could evolve under alternative scenarios. With continued improvements in vehicles and fuels, ZEVs can rapidly become viable, potentially reaching TCD parity or better compared to diesel vehicles by 2035 for all market segments. For heavy long-haul trucks, EVs become competitive on a TCD basis at charging costs below $0.18/kWh, while FCEVs become competitive on a TCD basis at hydrogen costs below $5/kg. A full transition to ZEV sales by 2035 results in 65% emissions reductions by 2050 compared to 2019 without supportive policies. Incentives such as the Inflation Reduction Act vehicle purchase credits further accelerate ZEV TCD competitiveness with major adoption opportunities over the next five years.

2.
Nat Commun ; 14(1): 6913, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903758

RESUMO

Passenger and freight travel account for 28% of U.S. greenhouse gas (GHG) emissions today. We explore pathways to reduce transportation emissions using NREL's TEMPO model under bounding assumptions on future travel behavior, technology advancement, and policies. Results show diverse routes to 80% or more well-to-wheel GHG reductions by 2050. Rapid adoption of zero-emission vehicles coupled with a clean electric grid is essential for deep decarbonization; in the median scenario, zero-emission vehicle sales reach 89% for passenger light-duty and 69% for freight trucks by 2030 and 100% sales for both by 2040. Up to 3,000 terawatt-hours of electricity could be needed in 2050 to power plug-in electric vehicles. Increased sustainable biofuel usage is also essential for decarbonizing aviation (10-42 billion gallons needed in 2050) and to support legacy vehicles during the transition. Managing travel demand growth can ease this transition by reducing the need for clean electricity and sustainable fuels.

3.
iScience ; 26(5): 106751, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37216100

RESUMO

Medium-and heavy-duty vehicles (MHDVs) comprise only a small fraction of vehicles on the road but disproportionately contribute to greenhouse gas emissions and air pollution from the transportation sector. Given the large variety of vehicle types-ranging from heavy-duty pickup trucks and box trucks to full-size buses and Class 8 tractor semi-trailers-and applications, multiple technologies offer opportunities to decarbonize MHDVs including battery-electric vehicles, hydrogen fuel cell vehicles, and sustainable liquid fuels. Here we provide an overview of the status, opportunities, challenges, and uncertainties for these competing-and potentially complementary-technologies, including consideration of supporting infrastructure and prospects for future success. We find a bright outlook for zero-emission vehicles and discuss remaining barriers and uncertainties around fleet decisions and changes to vehicle operation, infrastructure, manufacturing, and future fuel and technology trends that can be informed through analysis.

4.
Appl Energy ; 216: 482-493, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29713111

RESUMO

There are many technological pathways that can lead to reduced carbon dioxide emissions. However, these pathways can have substantially different impacts on other environmental endpoints, such as air quality and energy-related water demand. This study uses an integrated assessment model with state-level resolution of the energy system to compare environmental impacts of alternative low-carbon pathways for the United States. One set of pathways emphasizes nuclear energy and carbon capture and storage, while another set emphasizes renewable energy, including wind, solar, geothermal power, and bioenergy. These are compared with pathways in which all technologies are available. Air pollutant emissions, mortality costs attributable to particulate matter smaller than 2.5 µm in diameter, and energy-related water demands are evaluated for 50% and 80% carbon dioxide reduction targets in 2050. The renewable low-carbon pathways require less water withdrawal and consumption than the nuclear and carbon capture pathways. However, the renewable low-carbon pathways modeled in this study produce higher particulate matter-related mortality costs due to greater use of biomass in residential heating. Environmental co-benefits differ among states because of factors such as existing technology stock, resource availability, and environmental and energy policies.

5.
Appl Energy ; 208: 511-521, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30046218

RESUMO

Integrated Assessment Models (IAMs) characterize the interactions among human and earth systems. IAMs typically have been applied to investigate future energy, land use, and emission pathways at global to continental scales. Recent directions in IAM development include enhanced technological detail, greater spatial and temporal resolution, and the inclusion of air pollutant emissions. These developments expand the potential applications of IAMs to include support for air quality management and for coordinated environmental, climate, and energy planning. Furthermore, these IAMs could help decision makers more fully understand tradeoffs and synergies among policy goals, identify important cross-sector interactions, and, via scenarios, consider uncertainties in factors such as population and economic growth, technology development, human behavior, and climate change. A version of the Global Change Assessment Model with U.S. state-level resolution (GCAM-USA) is presented that incorporates U.S.-specific emission factors, pollutant controls, and air quality and energy regulations. Resulting air pollutant emission outputs are compared to U.S. Environmental Protection Agency 2011 and projected inventories. A Quality Metric is used to quantify GCAM-USA performance for several pollutants at the sectoral and state levels. This information provides insights into the types of applications for which GCAM-USA is currently well suited and highlights where additional refinement may be warranted. While this analysis is specific to the U.S., the results indicate more generally the importance of enhanced spatial resolution and of considering national and sub-national regulatory constraints within IAMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...