Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 18(23): e202300781, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843978

RESUMO

A novel synthetic approach to 2,3,6-trisubstituted pyridines, their 4,5-dideuterated derivatives, 4,5-13 C2 - and doubly-labeled D2 -13 C2 -pyridines has been developed using catalyst-free [4+2] cycloaddition of 1,2,4-triazines and in situ generated acetylene or labeled acetylene. Calcium carbide and water or deuterium oxide were used for the in situ generation of acetylene and dideuteroacetylene. Calcium carbide-13 C2 in the mixture with water or deuterium oxide was applied as 13 C2 -acetylene and D2 -13 C2 -acetylene source.

2.
Chem Asian J ; 16(16): 2286-2297, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34152671

RESUMO

Acetylene surrogates are efficient tools in modern organic chemistry with largely unexplored potential in the construction of heterocyclic cores. Two novel synthetic paths to 3,6-disubstituted pyridazines were proposed using readily available acetylene surrogates through flexible C2 unit installation procedures in a common reaction space mode (one-pot) and distributed reaction space mode (two-chamber): (1) an interaction of 1,2,4,5-tetrazine and its acceptor-functionalized derivatives with a CaC2 -H2 O mixture performed in a two-chamber reactor led to the corresponding pyridazines in quantitative yields; (2) [4+2] cycloaddition of 1,2,4,5-tetrazines to benzyl vinyl ether can be considered a universal synthetic path to a wide range of pyridazines. Replacing water with D2 O and vinyl ether with its trideuterated analog in the developed procedures, a range of 4,5-dideuteropyridazines of 95-99% deuteration degree was synthesized for the first time. Quantum chemical modeling allowed to quantify the substituent effect in both synthetic pathways.

3.
Molecules ; 23(10)2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250005

RESUMO

Recent progress in the leading synthetic applications of acetylene is discussed from the prospect of rapid development and novel opportunities. A diversity of reactions involving the acetylene molecule to carry out vinylation processes, cross-coupling reactions, synthesis of substituted alkynes, preparation of heterocycles and the construction of a number of functionalized molecules with different levels of molecular complexity were recently studied. Of particular importance is the utilization of acetylene in the synthesis of pharmaceutical substances and drugs. The increasing interest in acetylene and its involvement in organic transformations highlights a fascinating renaissance of this simplest alkyne molecule.


Assuntos
Acetileno/química , Preparações Farmacêuticas/síntese química , Alcinos/síntese química , Alcinos/química , Desenho de Fármacos , Estrutura Molecular , Preparações Farmacêuticas/química
4.
J Org Chem ; 83(7): 3819-3828, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29547278

RESUMO

A novel synthetic methodology for the preparation of 1,3-disubstituted pyrazoles from in situ generated nitrile imines and acetylene is reported. The reactions are performed in a simple two-chamber reactor. One part of the reactor is loaded with hydrazonoyl chloride precursors of active nitrile imine species and a base. The other part is used to generate acetylene from CaC2 and water. Partitioning of the reactants improves the yields of desired pyrazoles up to 99% and simplifies their isolation to a simple procedure of solvent evaporation. The approach requires no complex equipment and utilizes inexpensive, safe, and easy to handle calcium carbide as a starting material. A model deuterium incorporation is carried out according to the developed methodology, producing a series of novel 4,5-dideuteropyrazoles with excellent deuterium enrichment. Theoretical calculations on reaction mechanism and characterization of possible intermediate structures were performed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...