Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(5): 3489-3497, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38259983

RESUMO

Metal organic frameworks (MOFs) are attractive materials to generate multifunctional catalysts for the electrocatalytic reduction of CO2 to hydrocarbons. Here we report the synthesis of Cu and Zn modified Al-fumarate (Al-fum) MOFs, in which Zn promotes the selective reduction of CO2 to CO and Cu promotes CO reduction to oxygenates and hydrocarbons in an electrocatalytic cascade. Cu and Zn nanoparticles (NPs) were introduced to the Al-fum MOF by a double solvent method to promote in-pore metal deposition, and the resulting reduced Cu-Zn@Al-fum drop-cast on a hydrophobic gas diffusion electrode for electrochemical study. Cu-Zn@Al-fum is active for CO2 electroreduction, with the Cu and Zn loading influencing the product yields. The highest faradaic efficiency (FE) of 62% is achieved at -1.0 V vs. RHE for the conversion of CO2 into CO, HCOOH, CH4, C2H4 and C2H5OH, with a FE of 28% to CH4, C2H4 and C2H5OH at pH 6.8. Al-fum MOF is a chemically robust matrix to disperse Cu and Zn NPs, improving electrocatalyst lifetime during CO2 reduction by minimizing transition metal aggregation during electrode operation.

2.
ChemSusChem ; 15(7): e202200099, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35192235

RESUMO

Efficient deoxygenation of lignin-derived bio-oils is central to their adoption as precursors to sustainable liquid fuels in place of current fossil resources. In-situ catalytic transfer hydrogenation (CTH), using isopropanol and formic acid as solvent and in-situ hydrogen sources, was demonstrated over metal-doped and promoted MCM-41 for the depolymerization of oxygen-rich (35.85 wt%) lignin from Chinese fir sawdust (termed O-lignin). A NiMo/Al-MCM-41 catalyst conferred an optimal lignin-derived oil yield of 61.6 wt% with a comparatively low molecular weight (Mw =542 g mol-1 , Mn =290 g mol-1 ) and H/C ratio of 1.39. High selectivity to alkyl guaiacols was attributed to efficient in-situ hydrogen transfer from isopropanol/formic acid donors, and a synergy between surface acid sites in the Al-doped MCM-41 support and reducible Ni/Mo species, which improved the chemical stability and quality of the resulting lignin-derived bio-oils.


Assuntos
2-Propanol , Lignina , Catálise , Hidrogênio , Hidrogenação , Lignina/química , Óleos , Dióxido de Silício
3.
ACS Appl Mater Interfaces ; 14(4): 5643-5652, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35075892

RESUMO

Phosphor-containing white light-emitting diodes (LEDs) with low color-correlated temperatures (CCTs) and high color rendering indexes (CRIs) are highly desirable for energy-efficient and environmentally friendly solid-state light sources. Here, we report a new and efficient blue light-excited, green-emitting Ce3+-activated CaY2ZrScAl3O12 phosphor, which underpins the fabrication of high-color quality and full-visible-spectrum warm-white LED devices with ultrahigh CRI values (Ra > 96 and R9 > 96). A family of CaY2ZrScAl3O12:Ce3+ phosphors with different Ce3+ dopant concentrations were prepared by high-temperature solid-state synthesis. X-ray diffraction and corresponding Rietveld refinement reveal a garnet structure with an Ia3̅d space group and crystallographic parameters a = b = c = 12.39645(8) Å, α = ß = γ = 90°, and V = 1904.99(4) Å3. Luminescence properties were studied in detail as a function of Ce3+ with the optimal concentration 1% mol. Impressively, CaY2ZrScAl3O12:1%Ce3+ exhibits a broad excitation band from 370 to 500 nm, peaking at ∼421 nm, which is well matched with emission from commercial blue LED chips. Under 421 nm excitation, the CaY2ZrScAl3O12:1%Ce3+ phosphor produces dazzling green light in a wide emission band from 435 to 750 nm (emission peak: 514 nm; full width at half-maximum: 113 nm), with a high internal quantum efficiency of 63.1% and good resistance to thermal quenching (activation energy of 0.28 eV). A white LED device combining a 450 nm blue LED chip with CaY2ZrScAl3O12:1%Ce3+ green phosphor and commercial CaAlSiN3:Eu2+ red phosphor as color converters demonstrates bright warm-white light with excellent CIE color coordinates of (0.3938, 0.3819), low CCT of 3696 K, high CRI (Ra = 96.9, R9 = 98.2), and high luminous efficacy of 45.04 lm W-1 under a 20 mA driving current. New green phosphors enable the design and implementation of efficient luminescent materials for healthy solid-state lighting.

4.
Chemistry ; 27(58): 14418-14426, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34486173

RESUMO

Perovskite oxides are regarded as promising electrocatalysts for water splitting due to their cost-effectiveness, high efficiency and durability in the oxygen evolution reaction (OER). Despite these advantages, a fundamental understanding of how critical structural parameters of perovskite electrocatalysts influence their activity and stability is lacking. Here, we investigate the impact of structural defects on OER performance for representative LaNiO3 perovskite electrocatalysts. Hydrogen reduction of 700 °C calcined LaNiO3 induces a high density of surface oxygen vacancies, and confers significantly enhanced OER activity and stability compared to unreduced LaNiO3 ; the former exhibit a low onset overpotential of 380 mV at 10 mA cm-2 and a small Tafel slope of 70.8 mV dec-1 . Oxygen vacancy formation is accompanied by mixed Ni2+ /Ni3+ valence states, which quantum-chemical DFT calculations reveal modify the perovskite electronic structure. Further, it reveals that the formation of oxygen vacancies is thermodynamically more favourable on the surface than in the bulk; it increases the electronic conductivity of reduced LaNiO3 in accordance with the enhanced OER activity that is observed.

5.
ACS Omega ; 6(32): 21193, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423227

RESUMO

[This corrects the article DOI: 10.1021/acsomega.0c00358.].

6.
Nanomaterials (Basel) ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809677

RESUMO

Solid acid catalyzed cracking of waste oil-derived fatty acids is an attractive route to hydrocarbon fuels. HZSM-5 is an effective acid catalyst for fatty acid cracking; however, its microporous nature is susceptible to rapid deactivation by coking. We report the synthesis and application of hierarchical HZSM-5 (h-HZSM-5) in which silanization of pre-crystallized zeolite seeds is employed to introduce mesoporosity during the aggregation of growing crystallites. The resulting h-HZSM-5 comprises a disordered array of fused 10-20 nm crystallites and mesopores with a mean diameter of 13 nm, which maintain the high surface area and acidity of a conventional HZSM-5. Mesopores increase the yield of diesel range hydrocarbons obtained from oleic acid deoxygenation from ~20% to 65%, attributed to improved acid site accessibility within the hierarchical network.

7.
Chem Soc Rev ; 50(7): 4564-4605, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33595011

RESUMO

Ethene is a commodity chemical of great importance for manufacturing diverse consumer products, whose synthesis via crude oil steam cracking is one of the most energy-intensive processes in the petrochemical industry. Oxidative dehydrogenation (ODH) of ethane is an attractive, low energy, alternative route to ethene which could reduce the carbon footprint for its production, however, the commercial implementation of ODH requires catalysts with improved selectivity. This review critically assesses recent developments in catalytic technologies for ethane ODH, and discusses how insight into proposed mechanisms from computational studies, and CO2 assisted ethane dehydrogenation (CO2-DHE), provide opportunities for economically viable processes to meet growing demands for ethene while reducing carbon emissions. Future trends and emerging technologies for ethane ODH are also discussed.

8.
ChemSusChem ; 13(18): 4775, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32870594

RESUMO

Invited for this month's cover is the group of Karen Wilson and Adam Lee at RMIT University. The image shows platinum nanoparticles and Brønsted acid sites working cooperatively to catalyse the efficient hydrodeoxygenation of phenolic lignin residues to produce sustainable biofuels. The Full Paper itself is available at 10.1002/cssc.202000764.

9.
Biotechnol Biofuels ; 13: 100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32514312

RESUMO

BACKGROUND: Platform chemicals are essential to industrial processes. Used as starting materials for the manufacture of diverse products, their cheap availability and efficient sourcing are an industrial requirement. Increasing concerns about the depletion of natural resources and growing environmental consciousness have led to a focus on the economics and ecological viability of bio-based platform chemical production. Contemporary approaches include the use of immobilized enzymes that can be harnessed to produce high-value chemicals from waste. RESULTS: In this study, an engineered glucose dehydrogenase (GDH) was optimized for gluconic acid (GA) production. Sulfolobus solfataricus GDH was expressed in Escherichia coli. The K m and V max values for recombinant GDH were calculated as 0.87 mM and 5.91 U/mg, respectively. Recombinant GDH was immobilized on a hierarchically porous silica support (MM-SBA-15) and its activity was compared with GDH immobilized on three commercially available supports. MM-SBA-15 showed significantly higher immobilization efficiency (> 98%) than the commercial supports. After 5 cycles, GDH activity was at least 14% greater than the remaining activity on commercial supports. Glucose in bread waste hydrolysate was converted to GA by free-state and immobilized GDH. After the 10th reuse cycle on MM-SBA-15, a 22% conversion yield was observed, generating 25 gGA/gGDH. The highest GA production efficiency was 47 gGA/gGDH using free-state GDH. CONCLUSIONS: This study demonstrates the feasibility of enzymatically converting BWH to GA: immobilizing GDH on MM-SBA-15 renders the enzyme more stable and permits its multiple reuse.

10.
ChemSusChem ; 13(18): 4945-4953, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32449298

RESUMO

Hydrodeoxygenation (HDO) is a promising technology to upgrade fast pyrolysis bio-oils but it requires active and selective catalysts. Here we explore the synergy between the metal and acid sites in the HDO of anisole, a model pyrolysis bio-oil compound, over mono- and bi-functional Pt/(Al)-SBA-15 catalysts. Ring hydrogenation of anisole to methoxycyclohexane occurs over metal sites and is structure sensitive; it is favored over small (4 nm) Pt nanoparticles, which confer a turnover frequency (TOF) of approximately 2000 h-1 and a methoxycyclohexane selectivity of approximately 90 % at 200 °C and 20 bar H2 ; in contrast, the formation of benzene and the desired cyclohexane product appears to be structure insensitive. The introduction of acidity to the SBA-15 support promotes the demethyoxylation of the methoxycyclohexane intermediate, which increases the selectivity to cyclohexane from 15 to 92 % and the cyclohexane productivity by two orders of magnitude (from 15 to 6500 mmol gPt -1 h-1 ). Optimization of the metal-acid synergy confers an 865-fold increase in the cyclohexane production per gram of Pt and a 28-fold reduction in precious metal loading. These findings demonstrate that tuning the metal-acid synergy provides a strategy to direct complex catalytic reaction networks and minimize precious metal use in the production of bio-fuels.

11.
ChemSusChem ; 13(2): 312-320, 2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31595700

RESUMO

Catalytic decarbonylation is an underexplored strategy for deoxygenation of biomass-derived aldehydes owing to a lack of low-cost and robust heterogeneous catalysts that can operate in benign solvents. A family of Pd-functionalized hydrotalcites (Pd-HTs) were synthesized, characterized, and applied to the decarbonylation of furfural, 5-hydroxymethylfurfural (HMF), and aromatic and aliphatic aldehydes under microwave conditions. This catalytic system delivered enhanced decarbonylation yields and turnover frequencies, even at a low Pd loading (0.5 mol %). Furfural decarbonylation was optimized in a benign solvent (ethanol) compatible with biomass processing; HMF selectively afforded an excellent yield (93 %) of furfuryl alcohol without humin formation; however, a longer reaction favored the formation of furan through tandem alcohol dehydrogenation and decarbonylation. Yields of the substituted benzaldehydes (37-99 %) were proportional to the calculated Mulliken charge of the carbonyl carbon. Activity and selectivity reflected loading-dependent Pd speciation. Continuous-flow testing of the best Pd-HT catalyst delivered good stability over 16 h on stream, with near-quantitative conversion of HMF.

12.
Nat Commun ; 10(1): 5181, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729358

RESUMO

Dry reforming of methane (DRM) is an attractive route to utilize CO2 as a chemical feedstock with which to convert CH4 into valuable syngas and simultaneously mitigate both greenhouse gases. Ni-based DRM catalysts are promising due to their high activity and low cost, but suffer from poor stability due to coke formation which has hindered their commercialization. Herein, we report that atomically dispersed Ni single atoms, stabilized by interaction with Ce-doped hydroxyapatite, are highly active and coke-resistant catalytic sites for DRM. Experimental and computational studies reveal that isolated Ni atoms are intrinsically coke-resistant due to their unique ability to only activate the first C-H bond in CH4, thus avoiding methane deep decomposition into carbon. This discovery offers new opportunities to develop large-scale DRM processes using earth abundant catalysts.

13.
Molecules ; 24(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634651

RESUMO

The catalytic deoxygenation of bio-based feedstocks to fuels and chemicals presents new challenges to the catalytic scientist, with many transformations either performed in or liberating water as a byproduct during reaction. The design of catalysts with tunable hydrophobicity to aid product and reactant adsorption or desorption, respectively, is vital for processes including (trans)esterification and condensation reactions employed in sustainable biodiesel production and bio-oil upgrading processes. Increasing surface hydrophobicity of catalyst materials offers a means to displace water from the catalyst active site, and minimizes potential deactivation or hydrolysis side reactions. Hybrid organic⁻inorganic porous solids offer exciting opportunities to tune surface polarity and hydrophobicity, as well as critical parameters in controlling adsorption, reactant activation, and product selectivity in liquid and vapor phase catalysis. Here, we review advances in the synthesis and application of sulfonic-acid-functionalized periodic mesoporous organosilicas (PMO) as tunable hydrophobic solid acid catalysts in reactions relevant to biorefining and biofuel production.


Assuntos
Ácidos/química , Cerâmicas Modificadas Organicamente/química , Biocombustíveis , Biomassa , Catálise , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Porosidade
14.
Chem Sci ; 9(42): 8127-8133, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30542563

RESUMO

A heterogeneous catalyst system, employing Au nanoparticles (NPs) and Li-Al (1 : 2) layered double hydroxide (LDH) as support, showed excellent activity in aerobic oxidation of the benzylic alcohol group in ß-O-4 linked lignin model dimers to the corresponding carbonyl products using molecular oxygen under atmospheric pressure. The synergistic effect between Au NPs and the basic Li-Al LDH support induces further reaction of the oxidized model compounds, facilitating facile cleavage of the ß-O-4 linkage. Extension to oxidation of γ-valerolactone (GVL) extracted lignin and kraft lignin using Au/Li-Al LDH under similar conditions produced a range of aromatic monomers in high yield. Hydrolysis of the Au/Li-Al LDH oxidized lignin was found to increase the degree of lignin depolymerization, with monomer yields reaching 40% for GVL extracted lignin. Based on these results, the Au/Li-Al LDH + O2 catalyst system shows potential to be an environmentally friendly means of depolymerizing lignin to low molecular weight aromatics under mild conditions.

15.
Antibiotics (Basel) ; 7(3)2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970796

RESUMO

Healthcare-associated infections and the rise of drug-resistant bacteria pose significant challenges to existing antibiotic therapies. Silver nanocomposites are a promising solution to the current crisis, however their therapeutic application requires improved understanding of underpinning structure-function relationships. A family of chemically and structurally modified mesoporous SBA-15 silicas were synthesized as porous host matrices to tune the physicochemical properties of silver nanoparticles. Physicochemical characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES) and porosimetry demonstrate that functionalization by a titania monolayer and the incorporation of macroporosity both increase silver nanoparticle dispersion throughout the silica matrix, thereby promoting Ag2CO3 formation and the release of ionic silver in simulated tissue fluid. The Ag2CO3 concentration within functionalized porous architectures is a strong predictor for antibacterial efficacy against a broad spectrum of pathogens, including C. difficile and methicillin-resistant Staphylococcus aureus (MRSA).

16.
J Phys Chem C Nanomater Interfaces ; 121(15): 8490-8497, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29225721

RESUMO

Furfural is a key bioderived platform chemical whose reactivity under hydrogen atmospheres affords diverse chemical intermediates. Here, temperature-programmed reaction spectrometry and complementary scanning tunneling microscopy (STM) are employed to investigate furfural adsorption and reactivity over a Pt(111) model catalyst. Furfural decarbonylation to furan is highly sensitive to reaction conditions, in particular, surface crowding and associated changes in the adsorption geometry: furfural adopts a planar geometry on clean Pt(111) at low coverage, tilting at higher coverage to form a densely packed furfural adlayer. This switch in adsorption geometry strongly influences product selectivity. STM reveals the formation of hydrogen-bonded networks for planar furfural, which favor decarbonylation on clean Pt(111) and hydrogenolysis in the presence of coadsorbed hydrogen. Preadsorbed hydrogen promotes furfural hydrogenation to furfuryl alcohol and its subsequent hydrogenolysis to methyl furan, while suppressing residual surface carbon. Furfural chemistry over Pt is markedly different from that over Pd, with weaker adsorption over the former affording a simpler product distribution than the latter; Pd catalyzes a wider range of chemistry, including ring-opening to form propene. Insight into the role of molecular orientation in controlling product selectivity will guide the design and operation of more selective and stable Pt catalysts for furfural hydrogenation.

17.
Sci Adv ; 3(10): e1700231, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043293

RESUMO

Supported metal catalysts play a central role in the modern chemical industry but often exhibit poor on-stream stability. The strong metal-support interaction (SMSI) offers a route to control the structural properties of supported metals and, hence, their reactivity and stability. Conventional wisdom holds that supported Au cannot manifest a classical SMSI, which is characterized by reversible metal encapsulation by the support upon high-temperature redox treatments. We demonstrate a classical SMSI for Au/TiO2, evidenced by suppression of CO adsorption, electron transfer from TiO2 to Au nanoparticles, and gold encapsulation by a TiO x overlayer following high-temperature reduction (reversed by subsequent oxidation), akin to that observed for titania-supported platinum group metals. In the SMSI state, Au/TiO2 exhibits markedly improved stability toward CO oxidation. The SMSI extends to Au supported over other reducible oxides (Fe3O4 and CeO2) and other group IB metals (Cu and Ag) over titania. This discovery highlights the general nature of the classical SMSI and unlocks the development of thermochemically stable IB metal catalysts.

18.
ACS Appl Mater Interfaces ; 9(42): 36971-36979, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28950063

RESUMO

Narrow-band photoconductivity with a spectral width of 0.16 eV is obtained from solution-processed colloidal ZnO nanocrystals beneath the band-edge at 2.25 eV. A new model involving electron transfer from deep defects to discrete shallow donors is introduced to explain the narrow spectrum and the exponential form of the current rise and decay transients. The defects are tentatively assigned to neutral oxygen vacancies. The photocurrent responsivity can be enhanced by storage in air, and this correlates with the formation of carbonate surface species by capture of carbon dioxide during storage. This controllability is exploited to develop a low-cost and scalable photolithographic approach to pixelate photodetectors for applications such as object discrimination, sensing, etc. The spectral response can be spatially patterned so that dual (ultraviolet and green) and single (ultraviolet only) wavelength detecting ZnO pixels can be produced on the same substrate. This presents a new sensor mode with applications in security or full color imaging.

19.
ChemSusChem ; 10(17): 3506-3511, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28665029

RESUMO

Fast pyrolysis bio-oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom- and energy-efficient route to upgrade pyrolysis bio-oils. Propyl sulfonic acid (PrSO3 H) silicas are active for carboxylic acid esterification but suffer mass-transport limitations for bulky substrates. The incorporation of macropores (200 nm) enhances the activity of mesoporous SBA-15 architectures (post-functionalized by hydrothermal saline-promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of the turnover frequency (TOF) enhancement increasing with carboxylic acid chain length from 5 % (C3 ) to 110 % (C12 ). Macroporous-mesoporous PrSO3 H/SBA-15 also provides a two-fold TOF enhancement over its mesoporous analogue for the esterification of a real, thermal fast-pyrolysis bio-oil derived from woodchips. The total acid number was reduced by 57 %, as determined by GC×GC-time-of-flight mass spectrometry (GC×GC-ToFMS), which indicated ester and ether formation accompanying the loss of acid, phenolic, aldehyde, and ketone components.


Assuntos
Biocombustíveis , Dióxido de Silício/química , Ácidos Sulfônicos/química , Ácidos Carboxílicos/química , Catálise , Esterificação , Cinética , Porosidade , Temperatura
20.
ChemCatChem ; 9(9): 1648-1654, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28580035

RESUMO

A family of silica-supported, magnetite nanoparticle catalysts was synthesised and investigated for continuous-flow acetic acid ketonisation as a model pyrolysis bio-oil upgrading reaction. The physico-chemical properties of Fe3O4/SiO2 catalysts were characterised by using high-resolution transmission electron microscopy, X-ray absorption spectroscopy, X-ray photo-electron spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, thermogravimetric analysis and porosimetry. The acid site densities were inversely proportional to the Fe3O4 particle size, although the acid strength and Lewis character were size-invariant, and correlated with the specific activity for the vapour-phase acetic ketonisation to acetone. A constant activation energy (∼110 kJ mol-1), turnover frequency (∼13 h-1) and selectivity to acetone of 60 % were observed for ketonisation across the catalyst series, which implies that Fe3O4 is the principal active component of Red Mud waste.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...