Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(9): 3782-3790, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35191677

RESUMO

Temperature can affect many biological and chemical processes within a body. During in vivo measurements, varied temperature can impact the accurate quantification of additional abiotic factors such as oxygen. During magnetic resonance imaging (MRI) measurements, the temperature of the sample can increase with the absorption of radiofrequency energy, which needs to be well-regulated for thermal therapies and long exposure. To address this potentially confounding effect, temperature can be probed intentionally using reporter molecules to determine the temperature in vivo. This work describes a combined experimental and computational approach for the design of fluorinated molecular temperature sensors with the potential to improve the accuracy and sensitivity of 19F MRI-based temperature monitoring. These fluorinated sensors are being developed to overcome the temperature sensitivity and tissue limitations of the proton resonance frequency (10 × 10-3 ppm °C-1), a standard parameter used for temperature mapping in MRI. Here, we develop (perfluoro-[1,1'-biphenyl]-4,4'-diyl)bis((heptadecafluorodecyl)sulfane), which has a nearly 2-fold increase in temperature responsiveness, compared to the proton resonance frequency and the 19F MRI temperature sensor perfluorotributylamine, when tested under identical NMR conditions. While 19F MRI is in the early stages of translation into clinical practice, development of alternative sensors with improved diagnostic abilities will help advance the development and incorporation of fluorine magnetic resonance techniques for clinical use.


Assuntos
Flúor , Imageamento por Ressonância Magnética , Flúor/química , Espectroscopia de Ressonância Magnética , Enxofre , Temperatura
2.
J Med Chem ; 65(3): 2342-2360, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35007061

RESUMO

Chemical probes for epigenetic proteins are essential tools for dissecting the molecular mechanisms for gene regulation and therapeutic development. The bromodomain and extra-terminal (BET) proteins are master transcriptional regulators. Despite promising therapeutic targets, selective small molecule inhibitors for a single bromodomain remain an unmet goal due to their high sequence similarity. Here, we address this challenge via a structure-activity relationship study using 1,4,5-trisubstituted imidazoles against the BRD4 N-terminal bromodomain (D1). Leading compounds 26 and 30 have 15 and 18 nM affinity against BRD4 D1 and over 500-fold selectivity against BRD2 D1 and BRD4 D2 via ITC. Broader BET selectivity was confirmed by fluorescence anisotropy, thermal shift, and CETSA. Despite BRD4 engagement, BRD4 D1 inhibition was unable to reduce c-Myc expression at low concentration in multiple myeloma cells. Conversely, for inflammation, IL-8 and chemokine downregulation were observed. These results provide new design rules for selective inhibitors of an individual BET bromodomain.


Assuntos
Proteínas de Ciclo Celular/antagonistas & inibidores , Imidazóis/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Imidazóis/química , Imidazóis/metabolismo , Estrutura Molecular , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
6.
Langmuir ; 37(17): 5222-5231, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886317

RESUMO

Perfluorocarbon (PFC) filled nanoparticles are increasingly being investigated for various biomedical applications. Common approaches for PFC liquid entrapment involve surfactant-based emulsification and Pickering emulsions. Alternatively, PFC liquids are capable of being entrapped inside hollow nanoparticles via a postsynthetic loading method (PSLM). While the methodology for the PSLM is straightforward, the effect each loading parameter has on the PFC entrapment has yet to be investigated. Previous work revealed incomplete filling of the hollow nanoparticles. Changing the loading parameters was expected to influence the ability of the PFC to fill the core of the nanoparticles. Hence, it would be possible to model the loading mechanism and determine the influence each factor has on PFC entrapment by tracking the change in loading yield and efficiency of PFC-filled nanoparticles. Herein, neat PFC liquid was loaded into silica nanoparticles and extracted into aqueous phases while varying the sonication time, concentration of nanoparticles, volume ratio between aqueous and fluorous phases, and pH of the extraction water. Loading yields and efficiency were determined via 19F nuclear magnetic resonance and N2 physisorption isotherms. Sonication time was indicated to have the strongest correlation to loading yield and efficiency; however, method validation revealed that the current model does not fully explain the loading capabilities of the PSLM. Confounding variables and more finely controlled parameters need to be considered to better predict the behavior and loading capacity by the PSLM and warrants further study.

7.
Anal Chem ; 92(3): 2503-2510, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31913020

RESUMO

Multidimensional techniques that combine fully or partially orthogonal characterization methods in a single setup often provide a more comprehensive description of analytes. When applied to nanoparticles, they have the potential to reveal particle properties not accessible to more conventional 1D techniques. Herein, we apply recently developed 2D characterization techniques to nanoparticles using atmospheric-pressure ion mobility-mass spectrometry (IM-MS), and we demonstrate the analytical capability of this approach using ultraporous mesostructured silica nanoparticles (UMNs). We show that IM-MS yields a 2D particle size-mass distribution function, which in turn can be used to calculate not only important 1D distributions, i.e. particle size distributions, but also nanoparticle structural property distributions not accessible by other methods, including size-dependent particle porosity and the specific pore volume distribution function. IM-MS measurement accuracy was confirmed by measurement of NIST-certified polystyrene latex particle standards. For UMNs, comparison of IM-MS results with TEM and N2 physisorption yields quantitative agreement in particle size and qualitative agreement in average specific pore volume. IM-MS uniquely shows how within a single UMN population, porosity increases with increasing particle size, consistent with the proposed UMN growth mechanism. In total, we demonstrate the potential of IM-MS as a standard approach for the characterization of structurally complex nanoparticle populations, as it yields size-specific structural distribution functions.

8.
ACS Nano ; 11(6): 5623-5632, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28505422

RESUMO

Oxygen homeostasis is important in the regulation of biological function. Disease progression can be monitored by measuring oxygen levels, thus producing information for the design of therapeutic treatments. Noninvasive measurements of tissue oxygenation require the development of tools with minimal adverse effects and facile detection of features of interest. Fluorine magnetic resonance imaging (19F MRI) exploits the intrinsic properties of perfluorocarbon (PFC) liquids for anatomical imaging, cell tracking, and oxygen sensing. However, the highly hydrophobic and lipophobic properties of perfluorocarbons require the formation of emulsions for biological studies, though stabilizing these emulsions has been challenging. To enhance the stability and biological loading of perfluorocarbons, one option is to incorporate perfluorocarbon liquids into the internal space of biocompatible mesoporous silica nanoparticles. Here, we developed perfluorocarbon-loaded ultraporous mesostructured silica nanoparticles (PERFUMNs) as 19F MRI detectable oxygen-sensing probes. Ultraporous mesostructured silica nanoparticles (UMNs) have large internal cavities (average = 1.8 cm3 g-1), facilitating an average 17% loading efficiency of PFCs, meeting the threshold fluorine concentrations needed for imaging studies. Perfluoro-15-crown-5-ether PERFUMNs have the highest equivalent nuclei per PFC molecule and a spin-lattice (T1) relaxation-based oxygen sensitivity of 0.0032 mmHg-1 s-1 at 16.4 T. The option of loading PFCs after synthesizing UMNs, rather than traditional in situ core-shell syntheses, allows for use of a broad range of PFC liquids from a single material. The biocompatible and tunable chemistry of UMNs combined with the intrinsic properties of PFCs makes PERFUMNs a MRI sensor with potential for anatomical imaging, cell tracking, and metabolic spectroscopy with improved stability.


Assuntos
Imagem por Ressonância Magnética de Flúor-19/métodos , Fluorocarbonos/química , Nanopartículas/química , Oximetria/métodos , Oxigênio/sangue , Dióxido de Silício/química , Animais , Fluorocarbonos/administração & dosagem , Nanopartículas/ultraestrutura , Oxigênio/análise , Porosidade , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...