Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Biomed Mater ; 19(4)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740059

RESUMO

Cell-based tissue engineering often requires the use of scaffolds to provide a three-dimensional (3D) framework for cell proliferation and tissue formation. Polycaprolactone (PCL), a type of polymer, has good printability, favorable surface modifiability, adaptability, and biodegradability. However, its large-scale applicability is hindered by its hydrophobic nature, which affects biological properties. Composite materials can be created by adding bioactive materials to the polymer to improve the properties of PCL scaffolds. Osteolectin is an odontogenic factor that promotes the maintenance of the adult skeleton by promoting the differentiation of LepR+ cells into osteoblasts. Therefore, the aim of this study was to evaluate whether 3D-printed PCL/osteolectin scaffolds supply a suitable microenvironment for the odontogenic differentiation of human dental pulp cells (hDPCs). The hDPCs were cultured on 3D-printed PCL scaffolds with or without pores. Cell attachment and cell proliferation were evaluated using EZ-Cytox. The odontogenic differentiation of hDPCs was evaluated by alizarin red S staining and alkaline phosphatase assays. Western blot was used to evaluate the expression of the proteins DSPP and DMP-Results: The attachment of hDPCs to PCL scaffolds with pores was significantly higher than to PCL scaffolds without pores. The odontogenic differentiation of hDPCs was induced more in PCL/osteolectin scaffolds than in PCL scaffolds, but there was no statistically significant difference. 3D-printed PCL scaffolds with pores are suitable for the growth of hDPCs, and the PCL/osteolectin scaffolds can provide a more favorable microenvironment for the odontogenic differentiation of hDPCs.


Assuntos
Diferenciação Celular , Proliferação de Células , Polpa Dentária , Odontogênese , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Humanos , Polpa Dentária/citologia , Poliésteres/química , Alicerces Teciduais/química , Diferenciação Celular/efeitos dos fármacos , Odontogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Células Cultivadas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Osteoblastos/citologia
2.
Biomed Mater ; 19(4)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38688311

RESUMO

This study investigated the effectiveness of bone regeneration upon the application of leptin and osteolectin to a three-dimensional (3D) printed poly(ϵ-caprolactone) (PCL) scaffold. A fused deposition modeling 3D bioprinter was used to fabricate scaffolds with a diameter of 4.5 mm, a height of 0.5 mm, and a pore size of 420-520 nm using PCL (molecular weight: 43 000). After amination of the scaffold surface for leptin and osteolectin adhesion, the experimental groups were divided into the PCL scaffold (control), the aminated PCL (PCL/Amine) scaffold, the leptin-coated PCL (PCL/Leptin) scaffold, and the osteolectin-coated PCL (PCL/Osteo) scaffold. Next, the water-soluble tetrazolium salt-1 (WST-1) assay was used to assess cell viability. All groups exhibited cell viability rates of >100%. Female 7-week-old Sprague-Dawley rats were used forin vivoexperiments. Calvarial defects were introduced on the rats' skulls using a 5.5 mm trephine bur. The rats were divided into the PCL (control), PCL/Leptin, and PCL/Osteo scaffold groups. The scaffolds were then inserted into the calvarial defect areas, and the rats were sacrificed after 8-weeks to analyze the defect area. Micro-CT analysis indicated that the leptin- and osteolectin-coated scaffolds exhibited significantly higher bone regeneration. Histological analysis revealed new bone and blood vessels in the calvarial defect area. These findings indicate that the 3D-printed PCL scaffold allows for patient-customized fabrication as well as the easy application of proteins like leptin and osteolectin. Moreover, leptin and osteolectin did not show cytotoxicity and exhibited higher bone regeneration potential than the existing scaffold.


Assuntos
Regeneração Óssea , Leptina , Poliésteres , Impressão Tridimensional , Ratos Sprague-Dawley , Alicerces Teciduais , Leptina/metabolismo , Animais , Alicerces Teciduais/química , Regeneração Óssea/efeitos dos fármacos , Ratos , Poliésteres/química , Feminino , Engenharia Tecidual/métodos , Sobrevivência Celular/efeitos dos fármacos , Crânio/efeitos dos fármacos , Humanos , Osteogênese/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais
3.
Heliyon ; 9(12): e23282, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38144358

RESUMO

Alleviating inflammation and promoting dentine regeneration is critical for the healing of pulpitis. In this study, we investigated the anti-inflammatory, angiogenesis and odontogenesis function of icariin on Human dental pulp cells (HDPCs) under inflammatory state. Furthermore, the underlying mechanisms was also evaluated. Icariin attenuated the LPS-induced pro-inflammatory marker expression, such as interleukin-1ß (IL-1ß), IL-6 and IL-8. The immunoblotting and immunofluorescence staining results showed that icariin suppressed the inflammatory responses mediated by the protein kinase B (Akt) and nuclear factor kappa-B (NF-κB) signaling cascades. Additionally, icariin also upregulated the expression of odontogenic and angiogenic genes and proteins (namely dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), anti-collagen Ⅰ (COL-Ⅰ), and vascular endothelial growth factor (VEGF) and fibroblast growth factor-1 (FGF-1)), alkaline phosphatase activity, and calcium nodule deposition in LPS-exposed HDPCs. In a word, our findings indicated that icariin attenuated pulp inflammation and promoted odontogenic and angiogenic differentiation in the inflammatory state. Icariin may be a promising vital pulp therapy agent for the regenerative treatment of the inflamed dental pulp.

4.
Biomed Mater ; 19(1)2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37972541

RESUMO

This study investigated the effects on odontoblast differentiation of a 3D-printed poly-ϵ-caprolactone (PCL) scaffold that incorporated leptin. Material extrusion-type 3D printing with a 43 000-molecular weight PCL material was used to fabricate a PCL scaffold with a 6 mm diameter, 1 mm height, and 270-340 µm pore size. The experimental groups were PCL scaffolds (control group), PCL scaffolds with aminated surfaces (group A), and PCL scaffolds with leptin on the aminated surface (group L). The aminated surface was treated with 1,6-hexanediamine and verified by ninhydrin analysis. Leptin loading was performed using Traut's reagent and 4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt (Sulfo-SMCC). Groups A and L showed significantly higher surface wettability, pulp cell adhesion, and proliferation than the control group. Group L exhibited increased alkaline phosphatase, calcification deposits, and mRNA and protein expression of dentin sialophosphoprotein and dentin matrix acidic phosphoprotein 1 compared with the control group. In this study, a 3D-printed PCL scaffold containing leptin was enhanced odontoblast differentiation and dental pulp cells adhesion and proliferation.


Assuntos
Leptina , Alicerces Teciduais , Humanos , Polpa Dentária , Poliésteres , Diferenciação Celular , Impressão Tridimensional , Proliferação de Células , Engenharia Tecidual
5.
Dent Mater J ; 42(6): 860-867, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37914232

RESUMO

This study aimed to assess the effect of different calcium silicate-based root canal sealers (CSRS) on osteogenic effect in human periodontal ligament cells (hPDLCs). hPDLCs were cultured in a medium containing extract of 5 types of CSRS. The specimens were assessed by the cell cytotoxicity test, alkaline phosphatase staining, alizarin red S staining, quantitative real-time PCR, Western blot analysis, and enzyme-linked immunosorbent assay. The diluted concentrations of extracted solutions had no significant effect on the viability of hPDLCs. There was a statistically significant difference in the mRNA expression level of bone sialoprotein (BSP), osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) among some groups. The protein expressions of BSP, OCN, and RUNX2 were significantly higher in some groups compared to the control group. The CSRS did not interfere with the osteogenic differentiation of hPDLCs, compared to the control group. CSRS are shown to have biocompatibility and osteogenic differentiation effect on hPDLCs.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Osteogênese , Humanos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , Compostos de Cálcio/farmacologia , Diferenciação Celular , Ligamento Periodontal , Fosfatase Alcalina/metabolismo
6.
J Acute Med ; 13(3): 91-103, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37841822

RESUMO

This review assessed the development of Taiwan's emergency medical services (EMS) and focused on the optimizing initiatives of the EMS systems, the current state of Taiwan's EMS system, EMS benchmarks in different regions of Taiwan, EMS response during the coronavirus disease 2019 (COVID-19) pandemic, and future design. In the past decade, there has been a noticeable increase in prehospital services, numerous optimizing initiatives to improve patient prognosis, and the medical oversight model. Taiwan's current EMS system, including the dispatch system, out-of-hospital cardiac arrest (OHCA) patient management, time-sensitive critical illness in prehospital settings, and disaster response, has undergone significant improvements. These improvements have been demonstrated to have a measurable impact on patient outcomes, as supported by medical literature. Each region in Taiwan has developed a unique EMS system with local characteristics, such as the implementation of the Global Resuscitation Alliance 10 steps for OHCA-related quality control, hearing automated external defibrillator program, a five-level prehospital triage system, an island-hopping strategy for patients with major trauma, dispatcher-assisted teamwork for OHCA resuscitation, and optimized prehospital care for acute coronary syndrome patients. In response to the COVID-19 pandemic from 2019 to 2023, Taiwan's EMS implemented measures to combat the outbreak such as interagency collaboration to obtain patient's personal information, to optimize prehospital management initiatives, and to provide financial compensation and personal insurance for emergency medical technicians. The areas that need focus include integrating prehospital and in-hospital information to build a national-level database (One-Stop Emergency Management), increasing public awareness of first responders and emergency casualty care, and evolving the EMS system by incorporating private EMS system, initiating school-based education of paramedicine, and legally recognizing paramedics as medical and health care personnel. By improving these areas, we can better prepare for the future and ensure that Taiwan's EMS system continues to provide high-quality care to those in need.

7.
J Endod ; 49(12): 1660-1667, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37774945

RESUMO

INTRODUCTION: Osteolectin is a secreted glycoprotein of the C-type lectin domain superfamily, expressed in bone tissues and is reported as a novel osteogenic factor that promotes bone regeneration. However, the effect of osteolectin on human dental pulp cells (hDPCs) has not been reported. Therefore, we aimed to investigate the odontoblastic differentiation of osteolectin in hDPCs and further attempt to reveal its underlying mechanism. METHODS: Cytotoxicity assays were used to detect the cytotoxicity of osteolectin. The odontoblastic differentiation of hDPCs and its underlying mechanisms were measured by the alkaline phosphatase (ALP) activity, mineralized spots formation, and the gene and protein expression of odontoblastic differentiation through ALP staining, Alizarin red S staining, quantitative real-time polymerase chain reaction, and Western blot analysis, respectively. RESULTS: WST-1 assay showed osteolectin at concentrations below 300 ng/ml was noncytotoxic and safe for hDPCs. The following experiment demonstrated that osteolectin could increase ALP activity, accelerate the mineralization process, and up-regulate the odontogenic differentiation markers in both gene and protein levels (P < .05). Osteolectin stimulated the phosphorylation of ERK, JNK, and Protein kinase B (AKT) in hDPCs. Extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK), and AKT inhibitors decreased ALP activity and mineralization capacity and suppressed the expression of dentin sialophosphoprotein and dentin matrix protein-1. CONCLUSION: Osteolectin can promote odontoblastic differentiation of hDPCs, and the whole process may stimulate ERK, JNK, and AKT signaling pathways by increasing p-ERK, p-JNK, and p-AKT signals.


Assuntos
Proteínas da Matriz Extracelular , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas da Matriz Extracelular/farmacologia , Polpa Dentária , Diferenciação Celular , Transdução de Sinais , Odontoblastos , Fosfatase Alcalina/metabolismo , Células Cultivadas , Proliferação de Células , Fosfoproteínas
8.
Free Radic Biol Med ; 208: 820-832, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776917

RESUMO

SQSTM1/p62 (sequestosome 1) is a multifunctional protein that serves as a receptor for selective autophagy and scaffold. In selective autophagy, p62 functions as a bridge between polyubiquitinated proteins and autophagosomes. Further, p62 acts as a signaling hub for many cellular pathways including mTORC1, NF-κB, and Keap1-Nrf2. Post-translational modifications of p62, such as ubiquitination and phosphorylation, are known to determine its binding partners and regulate their intracellular functions. However, the mechanism of p62 deubiquitination remains unclear. In this study, we found that ubiquitin-specific protease 13 (USP13), a member of the USP family, directly binds p62 and removes ubiquitin at Lys7 (K7) of the PB1 domain. USP13-mediated p62 deubiquitination enhances p62 protein stability and facilitates p62 oligomerization, resulting in increased autophagy and degradation of Keap1, which is a negative regulator of the antioxidant response that promotes Nrf2 activation. Thus, USP13 can be considered a therapeutic target as a deubiquitination enzyme of p62 in autophagy-related diseases.


Assuntos
Antioxidantes , Autofagia , Fator 2 Relacionado a NF-E2 , Proteína Sequestossoma-1 , Proteases Específicas de Ubiquitina , Humanos , Antioxidantes/farmacologia , Autofagia/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
9.
BMB Rep ; 56(10): 545-550, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574806

RESUMO

Osteoporosis is a major public health concern, which requires novel therapeutic strategies to prevent or mitigate bone loss. Natural compounds have attracted attention as potential therapeutic agents due to their safety and efficacy. In this study, we investigated the regulatory activities of boeravinone B (BOB), a natural rotenoid isolated from the medicinal plant Boerhavia diffusa, on the differentiation of osteoclasts and mesenchymal stem cells (MSCs), the two main cell components responsible for bone remodeling. We found that BOB inhibited osteoclast differentiation and function, as determined by TRAP staining and pit formation assay, with no significant cytotoxicity. Furthermore, our results showing that BOB ameliorates ovariectomyinduced bone loss demonstrated that BOB is also effective in vivo. BOB exerted its inhibitory effects on osteoclastogenesis by downregulating the RANKL/RANK signaling pathways, including NF-κB, MAPK, and PI3K/Akt, resulting in the suppression of osteoclast-specific gene expression. Further experiments revealed that, at least phenomenologically, BOB promotes osteoblast differentiation of bone marrow-derived MSCs but inhibits their differentiation into adipocytes. In conclusion, our study demonstrates that BOB inhibits osteoclastogenesis and promotes osteoblastogenesis in vitro by regulating various signaling pathways. These findings suggest that BOB has potential value as a novel therapeutic agent for the prevention and treatment of osteoporosis. [BMB Reports 2023; 56(10): 545-550].


Assuntos
NF-kappa B , Osteoporose , Humanos , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Diferenciação Celular , Osteoporose/metabolismo
10.
Materials (Basel) ; 16(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37444828

RESUMO

Proton exchange membrane fuel cell (PEMFC) is a renewable energy source rapidly approaching commercial viability. The performance is significantly affected by the transfer of fluid, charges, and heat; gas diffusion layer (GDL) is primarily concerned with the consistent transfer of these components, which are heavily influenced by the material and design. High-efficiency GDL must have excellent thermal conductivity, electrical conductivity, permeability, corrosion resistance, and high mechanical characteristics. The first step in creating a high-performance GDL is selecting the appropriate material. Therefore, titanium is a suitable substitute for steel or carbon due to its high strength-to-weight and superior corrosion resistance. The second crucial parameter is the fabrication method that governs all the properties. This review seeks to comprehend numerous fabrication methods such as tape casting, 3D printing, freeze casting, phase separation technique, and lithography, along with the porosity controller in each process such as partial sintering, input design, ice structure, pore agent, etching time, and mask width. Moreover, other GDL properties are being studied, including microstructure and morphology. In the future, GeoDict simulation is highly recommended for optimizing various GDL properties, as it is frequently used for other porous materials. The approach can save time and energy compared to intensive experimental work.

11.
Materials (Basel) ; 16(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37444868

RESUMO

Polymer electrolyte membrane fuel cells (PEMFCs) and PEM electrolyzer are emerging technologies that produce energy with zero carbon emissions. However, the commercial feasibility of these technologies mostly relies on their efficiency, which is determined by individual parts, including the gas diffusion layer (GDL). GDL transfers fluid and charges while protecting other components form flooding and corrosion. As there is a very limited attention toward the simulation work, in this work, a novel approach was utilized that combines simulation and experimental techniques to optimize the sintering temperature of GDL. Ti64 GDL was produced through tape casting, a commercial method famous for producing precise thickness, uniform, and high-quality films and parameters such as slurry composition and rheology, casting parameters, drying, and debinding were optimized. The porosity and mechanical properties of the samples were tested experimentally at various sintering temperatures. The experimental results were compared with the simulated results achieved from the GeoDict simulation tool, showing around 96% accuracy, indicating that employing GeoDict to optimize the properties of Ti64 GDL produced via tape casting is a critical step towards the commercial feasibility of PEMFCs and electrolyzer. These findings significantly contribute to the development of sustainable energy solutions.

12.
Restor Dent Endod ; 48(2): e18, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37284346

RESUMO

Objectives: This study aimed to determine whether collagen triple helix repeat containing-1 (CTHRC1), which is involved in vascular remodeling and bone formation, can stimulate odontogenic differentiation and angiogenesis when administered to human dental pulp stem cells (hDPSCs). Materials and Methods: The viability of hDPSCs upon exposure to CTHRC1 was assessed with the WST-1 assay. CTHRC1 doses of 5, 10, and 20 µg/mL were administered to hDPSCs. Reverse-transcription polymerase reaction was used to detect dentin sialophosphoprotein, dentin matrix protein 1, vascular endothelial growth factor, and fibroblast growth factor 2. The formation of mineralization nodules was evaluated using Alizarin red. A scratch wound assay was conducted to evaluate the effect of CTHRC1 on cell migration. Data were analyzed using 1-way analysis of variance followed by the Tukey post hoc test. The threshold for statistical significance was set at p < 0.05. Results: CTHRC1 doses of 5, 10, and 20 µg/mL had no significant effect on the viability of hDPSCs. Mineralized nodules were formed and odontogenic markers were upregulated, indicating that CTHRC1 promoted odontogenic differentiation. Scratch wound assays demonstrated that CTHRC1 significantly enhanced the migration of hDPSCs. Conclusions: CTHRC1 promoted odontogenic differentiation and mineralization in hDPSCs.

13.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37298716

RESUMO

Dentin regeneration is the preferred method used to preserve dental pulp vitality after pulp exposure due to caries. Red light-emitting diode irradiation (LEDI), which is based on photobiomodulation (PBM), has been used to promote hard-tissue regeneration. However, the underlying mechanism still needs elucidation. This study aimed to explore the mechanism involved in red LEDI affecting dentin regeneration. Alizarin red S (ARS) staining revealed that red LEDI induced mineralization of human dental pulp cells (HDPCs) in vitro. We further distinguished the cell proliferation (0-6 d), differentiation (6-12 d), and mineralization (12-18 d) of HDPCs in vitro and treated cells either with or without red LEDI in each stage. The results showed that red LEDI treatment in the mineralization stage, but not the proliferation or differentiation stages, increased mineralized nodule formation around HDPCs. Western blot also indicated that red LEDI treatment in the mineralization stage, but not the proliferation or differentiation stages, upregulated the expression of dentin matrix marker proteins (dentin sialophosphoprotein, DSPP; dentin matrix protein 1, DMP1; osteopontin, OPN) and an intracellular secretory vesicle marker protein (lysosomal-associated membrane protein 1, LAMP1). Therefore, the red LEDI might enhance the matrix vesicle secretion of HDPCs. On the molecular level, red LEDI enhanced mineralization by activating the mitogen-activated protein kinase (MAPK) signaling pathways (ERK and P38). ERK and P38 inhibition reduced mineralized nodule formation and the expression of relevant marker proteins. In summary, red LEDI enhanced the mineralization of HDPCs by functioning to produce a positive effect in the mineralization stage in vitro.


Assuntos
Polpa Dentária , Odontoblastos , Humanos , Polpa Dentária/metabolismo , Odontoblastos/metabolismo , Diferenciação Celular , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Fosfatase Alcalina/metabolismo , Fosfoproteínas/metabolismo
14.
Mol Med ; 28(1): 164, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585612

RESUMO

BACKGROUND: High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that plays a central role in innate immunity. HMGB1 acts as a late mediator of inflammation when actively secreted in response to inflammatory stimuli. Several post-translational modifications (PTMs), including acetylation, phosphorylation, and oxidation, are involved in HMGB1 secretion. However, the E3 ligases of HMGB1 and the mechanism by which DUBs regulate HMGB1 deubiquitination are not well known. METHODS: LC-MS/MS, proximity ligation assay, immunoprecipitation were used to identify ubiquitin-specific protease 13 (USP13) as a binding partner of HMGB1 and to investigate ubiquitination of HMGB1. USP13 domain mutant was constructed for domain study and Spautin-1 was treated for inhibition of USP13. Confocal microscopy image showed localization of HMGB1 by USP13 overexpression. The data were analyzed using one-way analysis of variance with Tukey's honestly significant difference post-hoc test for multiple comparisons or a two-tailed Student's t-test. RESULTS: We identified ubiquitin-specific protease 13 (USP13) as a novel binding partner of HMGB1 and demonstrated that USP13 plays a role in stabilizing HMGB1 from ubiquitin-mediated degradation. USP13 overexpression increased nucleocytoplasmic translocation of HMGB1 and promoted its secretion, which was inhibited by treatment with Spautin-1, a selective inhibitor of USP13. CONCLUSION: Taken together, we suggest that USP13 is a novel deubiquitinase of HMGB1 that regulates the stability and secretion of HMGB1.


Assuntos
Endopeptidases , Proteína HMGB1 , Humanos , Endopeptidases/metabolismo , Proteína HMGB1/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteases Específicas de Ubiquitina/genética
15.
Cell Death Dis ; 13(9): 791, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109513

RESUMO

Immune checkpoint molecule programmed death-ligand 1 (PD-L1) is overexpressed in cancer cells and imparts resistance to cancer therapy. Although membrane PD-L1 has been targeted for cancer immune therapy, nuclear PD-L1 was reported to confer cancer resistance. Therefore, it is important to regulate the nuclear PD-L1. The mechanisms underlying the therapeutic efficacy of PD-L1 targeting have not been well-established. Cellular senescence has been considered a pivotal mechanism to prevent cancer progression, and recently, PD-L1 inhibition was shown to be involved in cancer cell senescence. However, the relevance of PD-L1 targeting-induced senescence and the role of stimulator of interferon genes (STING) has not been reported. Therefore, we aimed to identify the role of PD-L1 in cancer progression and how it regulates cancer prevention. In this study, we found that PD-L1 depletion-induced senescence via strong induction of STING expression in mouse melanoma B16-F10 and colon cancer CT26 cells, and in human melanoma A375 and lung cancer A549 cells. Interestingly, nuclear PD-L1 silencing increased STING promoter activity, implying that PD-L1 negatively regulates STING expression via transcriptional modulation. Furthermore, we showed that PD-L1 binds to the STING promoter region, indicating that PD-L1 directly controls STING expression to promote cancer growth. In addition, when we combined PD-L1 silencing with the senescence-inducing chemotherapeutic agent doxorubicin, the effect of PD-L1-targeting was even more powerful. Overall, our findings can contribute to the understanding of the role of PD-L1 in cancer therapy by elucidating a novel mechanism for PD-L1 targeting in cancer cells.


Assuntos
Antígeno B7-H1 , Melanoma , Proteínas de Membrana/metabolismo , Animais , Antígeno B7-H1/metabolismo , Doxorrubicina , Humanos , Proteínas de Checkpoint Imunológico , Interferons , Melanoma/metabolismo , Camundongos
16.
PLoS One ; 17(4): e0266969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421162

RESUMO

BACKGROUND: The association between out-of-hospital cardiac arrest patient survival and advanced life support response time remained controversial. We aimed to test the hypothesis that for adult, non-traumatic, out-of-hospital cardiac arrest patients, a shorter advanced life support response time is associated with a better chance of survival. We analyzed Utstein-based registry data on adult, non-traumatic, out-of-hospital cardiac arrest patients in Taipei from 2011 to 2015. METHODS: Patients without complete data, witnessed by emergency medical technicians, or with response times of ≥ 15 minutes, were excluded. We used logistic regression with an exposure of advanced life support response time. Primary and secondary outcomes were survival to hospital discharge and favorable neurological outcomes (cerebral performance category ≤ 2), respectively. Subgroup analyses were based on presenting rhythms of out-of-hospital cardiac arrest, bystander cardiopulmonary resuscitation, and witness status. RESULTS: A total of 4,278 cases were included in the final analysis. The median advanced life support response time was 9 minutes. For every minute delayed in advanced life support response time, the chance of survival to hospital discharge would reduce by 7% and chance of favorable neurological outcome by 9%. Subgroup analysis showed that a longer advanced life support response time was negatively associated with the chance of survival to hospital discharge among out-of-hospital cardiac arrest patients with shockable rhythm and pulse electrical activity groups. CONCLUSIONS: In non-traumatic, adult, out-of-hospital cardiac arrest patients in Taipei, a longer advanced life support response time was associated with declining odds of survival to hospital discharge and favorable neurologic outcomes, especially in patients presenting with shockable rhythm and pulse electrical activity.


Assuntos
Reanimação Cardiopulmonar , Serviços Médicos de Emergência , Parada Cardíaca Extra-Hospitalar , Adulto , Cardioversão Elétrica , Humanos , Tempo de Reação , Sistema de Registros
17.
Br J Cancer ; 126(12): 1806-1814, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35236936

RESUMO

BACKGROUND: Sorafenib is one of the standard first-line therapies for advanced hepatocellular carcinoma (HCC). Unfortunately, there are currently no appropriate biomarkers to predict the clinical efficacy of sorafenib in HCC patients. MicroRNAs (miRNAs) have been studied for their biological functions and clinical applications in human cancers. METHODS: In this study, we found that miR-10b-3p expression was suppressed in sorafenib-resistant HCC cell lines through miRNA microarray analysis. RESULTS: Sorafenib-induced apoptosis in HCC cells was significantly enhanced by miR-10b-3p overexpression and partially abrogated by miR-10b-3p depletion. Among 45 patients who received sorafenib for advanced HCC, those with high miR-10b-3p levels, compared to those with low levels, exhibited significantly longer overall survival (OS) (median, 13.9 vs. 3.5 months, p = 0.021), suggesting that high serum miR-10b-3p level in patients treated with sorafenib for advanced HCC serves as a biomarker for predicting sorafenib efficacy. Furthermore, we confirmed that cyclin E1, a known promoter of sorafenib resistance reported by our previous study, is the downstream target for miR-10b-3p in HCC cells. CONCLUSIONS: This study not only identified the molecular target for miR-10b-3p, but also provided evidence that circulating miR-10b-3p may be used as a biomarker for predicting sorafenib sensitivity in patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Sorafenibe , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Sorafenibe/farmacologia
18.
Medicina (Kaunas) ; 58(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35334610

RESUMO

Background and Objectives: Human dental pulp cells (HDPCs) can be used for dentin regeneration due to its odontogenic differentiation property. Icariin can induce osteogenic differentiation of stem cells. However, its potential to induce odontogenic differentiation of HDPCs remains unclear. Thus, the aim of this study was to evaluate the capacity of icariin to induce odontogenic differentiation of HDPCs and investigate the underlying molecular mechanism. Materials and Methods: Cell viability assay was used to detect the cytotoxicity of icariin to HDPCs. Effect of icariin on HDPCs chemotaxis was measured by scratch migration assay. The mineralized and odontogenic differentiation of HDPCs was assessed by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, real-time PCR, and Western blot of dentin matrix protein 1 (DMP 1) and dentin sialophosphoprotein (DSPP). In addition, Mitogen-activated protein kinase (MAPK) signaling pathway of icariin-induced biomineralization was investigated by Western blot. Results: Cells treated with icariin at all concentrations tested maintained viability, indicating that icariin was biocompatible. Icariin accelerated HDPCs chemotaxis (p < 0.05). Expression levels of related odontogenic markers were increased in the presence of icariin (p < 0.05). Icariin-induced odontogenic differentiation occurred via activation of the MAPK signaling pathway. Furthermore, MAPK inhibitors suppressed expression levels of DSPP and DMP 1 protein, ALP activity, and mineralization of HDPCs. Conclusions: Icariin can upregulate odontogenic differentiation of HDPCs by triggering the MAPK signaling pathway.


Assuntos
Polpa Dentária , Osteogênese , Diferenciação Celular , Flavonoides , Humanos , Odontogênese/fisiologia
19.
Materials (Basel) ; 15(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35329621

RESUMO

A calcium silicate cement/methacrylated gelatin (GelMa) scaffold has been applied in tissue engineering; however, the research on its applications in dental tissue regeneration remains lacking. We investigate the effect of this scaffold on human dental pulp stem cells (hDPSCs). hDPSCs were cultured in 3D-printed GelMa and MTA-GelMa scaffolds. Cell adhesion was evaluated using scanning electron microscopy images. Cells were cultured in an osteogenic differentiation medium, which contained a complete medium or α-MEM containing aqueous extracts of the 3D-printd GelMa or MTA-GelMa scaffold with 2% FBS, 10 mM ß-glycerophosphate, 50 µg/mL ascorbic acid, and 10 nM dexamethasone; cell viability and differentiation were shown by WST-1 assay, Alizarin Red S staining, and alkaline phosphatase staining. Quantitative real-time PCR was used to measure the mRNA expression of DSPP and DMP-1. One-way analysis of variance followed by Tukey's post hoc test was used to determine statistically significant differences, identified at p < 0.05. hDPSCs adhered to both the 3D-printed GelMa and MTA-GelMa scaffolds. There was no statistically significant difference between the GelMa and MTA-GelMa groups and the control group in the cell viability test. Compared with the control group, the 3D-printed MTA-GelMa scaffold promoted the odontogenic differentiation of hDPSCs. The 3D-printed MTA-GelMa scaffold is suitable for the growth of hDPSCs, and the scaffold extracts can better promote odontoblastic differentiation.

20.
Am J Orthod Dentofacial Orthop ; 162(1): 108-121, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35288020

RESUMO

This case report describes the successful orthodontic treatment of an 11-year-old girl with skeletal Class II malocclusion and congenitally missing mandibular second premolars. To resolve her upper lip protrusion and restore the missing mandibular premolars, extraction of the maxillary first premolars and subsequent autotransplantation of the extracted premolars onto the site of the missing mandibular second premolars were performed. To ensure the success of the autotransplantation and subsequent orthodontic treatment, an orthodontic force was preapplied on the donor teeth, and the recipient sockets were prepared with the aid of replica teeth. Thereafter, comprehensive orthodontic treatment was performed to close the extraction space in the maxilla and align the mandibular dentition, including the transplants. The patient achieved a functional occlusion with an improved facial profile. Results of the orthodontic treatment and autotransplantation were stable during the 5-year follow-up. On the basis of this report, a management protocol for a biomechanically enhanced autotransplantation procedure was suggested. This approach would enable an effective treatment procedure, thereby increasing the usefulness of autotransplantation.


Assuntos
Má Oclusão Classe II de Angle , Ligamento Periodontal , Dente Pré-Molar/transplante , Criança , Feminino , Humanos , Má Oclusão Classe II de Angle/cirurgia , Maxila , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...