Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 591-594, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891363

RESUMO

Electrocardiogram (ECG) signals convey immense information that, when properly processed, can be used to diagnose various health conditions including arrhythmia and heart failure. Deep learning algorithms have been successfully applied to medical diagnosis, but existing methods heavily rely on abundant high-quality annotations which are expensive. Self-supervised learning (SSL) circumvents this annotation cost by pre-training deep neural networks (DNNs) on auxiliary tasks that do not require manual annotation. Despite its imminent need, SSL applications to ECG classification remain under-explored. In this work, we propose an SSL algorithm based on ECG delineation and show its effectiveness for arrhythmia classification. Our experiments demonstrate not only how the proposed algorithm enhances the DNN's performance across various datasets and fractions of labeled data, but also how features learnt via pre-training on one dataset can be trans-ferred when fine-tuned on a different dataset.


Assuntos
Arritmias Cardíacas , Eletrocardiografia , Algoritmos , Arritmias Cardíacas/diagnóstico , Humanos , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado
2.
J Med Internet Res ; 23(9): e31129, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505839

RESUMO

BACKGROUND: When using a smartwatch to obtain electrocardiogram (ECG) signals from multiple leads, the device has to be placed on different parts of the body sequentially. The ECG signals measured from different leads are asynchronous. Artificial intelligence (AI) models for asynchronous ECG signals have barely been explored. OBJECTIVE: We aimed to develop an AI model for detecting acute myocardial infarction using asynchronous ECGs and compare its performance with that of the automatic ECG interpretations provided by a commercial ECG analysis software. We sought to evaluate the feasibility of implementing multiple lead-based AI-enabled ECG algorithms on smartwatches. Moreover, we aimed to determine the optimal number of leads for sufficient diagnostic power. METHODS: We extracted ECGs recorded within 24 hours from each visit to the emergency room of Ajou University Medical Center between June 1994 and January 2018 from patients aged 20 years or older. The ECGs were labeled on the basis of whether a diagnostic code corresponding to acute myocardial infarction was entered. We derived asynchronous ECG lead sets from standard 12-lead ECG reports and simulated a situation similar to the sequential recording of ECG leads via smartwatches. We constructed an AI model based on residual networks and self-attention mechanisms by randomly masking each lead channel during the training phase and then testing the model using various targeting lead sets with the remaining lead channels masked. RESULTS: The performance of lead sets with 3 or more leads compared favorably with that of the automatic ECG interpretations provided by a commercial ECG analysis software, with 8.1%-13.9% gain in sensitivity when the specificity was matched. Our results indicate that multiple lead-based AI-enabled ECG algorithms can be implemented on smartwatches. Model performance generally increased as the number of leads increased (12-lead sets: area under the receiver operating characteristic curve [AUROC] 0.880; 4-lead sets: AUROC 0.858, SD 0.008; 3-lead sets: AUROC 0.845, SD 0.011; 2-lead sets: AUROC 0.813, SD 0.018; single-lead sets: AUROC 0.768, SD 0.001). Considering the short amount of time needed to measure additional leads, measuring at least 3 leads-ideally more than 4 leads-is necessary for minimizing the risk of failing to detect acute myocardial infarction occurring in a certain spatial location or direction. CONCLUSIONS: By developing an AI model for detecting acute myocardial infarction with asynchronous ECG lead sets, we demonstrated the feasibility of multiple lead-based AI-enabled ECG algorithms on smartwatches for automated diagnosis of cardiac disorders. We also demonstrated the necessity of measuring at least 3 leads for accurate detection. Our results can be used as reference for the development of other AI models using sequentially measured asynchronous ECG leads via smartwatches for detecting various cardiac disorders.


Assuntos
Inteligência Artificial , Infarto do Miocárdio , Algoritmos , Eletrocardiografia , Humanos , Infarto do Miocárdio/diagnóstico , Estudos Retrospectivos
3.
Crit Care Med ; 48(11): e1106-e1111, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32947466

RESUMO

OBJECTIVES: A deep learning-based early warning system is proposed to predict sepsis prior to its onset. DESIGN: A novel algorithm was devised to detect sepsis 6 hours prior to its onset based on electronic medical records. SETTING: Retrospective cohorts from three separate hospitals are used in this study. Sepsis onset was defined based on Sepsis-3. Algorithms are evaluated based on the score function used in the Physionet Challenge 2019. PATIENTS: Over 60,000 ICU patients with 40 clinical variables (vital signs, laboratory results) for each hour of a patient's ICU stay were used. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The proposed algorithm predicted the onset of sepsis in the preceding n hours (where n = 4, 6, 8, or 12). Furthermore, the proposed method compared how many sepsis patients can be predicted in a short time with other methods. To interpret a given result in a clinical perspective, the relationship between input variables and the probability of the proposed method were presented. The proposed method achieved superior results (area under the receiver operating characteristic curve, area under the precision-recall curve, and score) and predicted more sepsis patients in advance. In official phase, the proposed method showed the utility score of -0.101, area under the receiver operating characteristic curve 0.782, area under the precision-recall curve 0.041, accuracy 0.786, and F-measure 0.046. CONCLUSIONS: Using Physionet Challenge 2019, the proposed method can accurately and early predict the onset of sepsis. The proposed method can be a practical early warning system in the environment of real hospitals.


Assuntos
Registros Eletrônicos de Saúde/estatística & dados numéricos , Sepse/diagnóstico , Algoritmos , Aprendizado Profundo , Escore de Alerta Precoce , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Modelos Estatísticos , Redes Neurais de Computação , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sepse/etiologia , Sepse/patologia , Sinais Vitais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...