Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 248: 125955, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494999

RESUMO

Vigorous activation of mitochondria in spermatozoa during capacitation induces the biological and morphological changes of spermatozoa to acquire fertilizing ability. To in-depth understand the dynamic roles of mitochondrial and male fertility, this study was to identify how the mitochondrial proteins are changed during sperm capacitation and regulate male fertility using boar spermatozoa. The mitochondrial proteins were differentially changed during sperm capacitation according to fertility status, i.e., superior litter size (SL) and normal litter size (NL). Following sperm capacitation, ubiquitin-cytochrome c reductase core protein (UQCRC1) and ATP synthase F1 (ATP5F1) increased in NL, while cytochrome c oxidase subunit 5B (COX5B), and cytochrome c1 (CYC1) proteins decreased. In contrast, only and ubiquinone oxidoreductase core subunit 8 (NDUFS8) protein was increased in SL following capacitation. The protein expression difference value of CYC1, COX5B, and NDUFS8 following sperm capacitation was lower in NL than SL boars. Based on these complicated changes during sperm capacitation, the accuracy for predicting male fertility of NDUFS8 was increased to 87 %. Overall, considering the systematic orchestration of mitochondrial protein expression according to sperm capacitation status, it will be possible to better understand male fertility.


Assuntos
Sêmen , Capacitação Espermática , Suínos , Masculino , Animais , Sêmen/metabolismo , Capacitação Espermática/fisiologia , Proteínas Mitocondriais/metabolismo , Fertilidade/fisiologia , Espermatozoides/metabolismo , Mitocôndrias
2.
World J Mens Health ; 40(3): 526-535, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35274503

RESUMO

PURPOSE: During epididymal sperm maturation, spermatozoa acquire progressive motility through dynamic protein modifications. However, the relationship between sequential protein modifications during epididymal sperm maturation and sperm motility and fertility has not yet been investigated. This study investigated whether sequential changes in fertility-related protein expression including that of enolase 1 (ENO1), ubiquinol-cytochrome c reductase core protein 1 and 2 (UQCRC1 and UQCRC2), and voltage-dependent anion channel 2 (VDAC2) in spermatozoa during epididymal maturation are related to bovine sperm motility. Moreover, we found that mitochondrial metabolism is closely related to fertility-related proteins. Therefore, we investigated how the sequential modification of mitochondrial proteins during epididymal maturation regulates sperm motility. MATERIALS AND METHODS: To determine the differential protein expression in caput and cauda epididymal spermatozoa from low and high motility bulls, western blot analysis was performed. Moreover, signaling pathways were identified to understand the mechanisms of regulation of sperm motility through the differential protein expression associated with fertility-related proteins. RESULTS: We found that ENO1 was substantially higher in the caput spermatozoa from low motility bulls than the caput and cauda spermatozoa from high motility bulls. However, ENO1 expression in low motility bull spermatozoa was downregulated to a level comparable to that in the high motility bull spermatozoa during epididymal maturation. Moreover, there was a lack of modification of mitochondrial proteins, including glutathione peroxidase 4 and NADH:Ubiquinone Oxidoreductase Core Subunit S8, in low motility bull spermatozoa during epididymal maturation, whereas active changes were detected in high motility bull spermatozoa. CONCLUSIONS: Irregular modifications of mitochondrial proteins during epididymal sperm maturation may increase excessive ROS production and premature activation of spermatozoa during epididymal maturation. Consequently, spermatozoa may lose their motility by the earlier consumption of their energy source and may be damaged by ROS during epididymal maturation, resulting in a decline in sperm motility and bull fertility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...