Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 237(Pt 1): 116786, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37517485

RESUMO

Freshwater shortages are a consequence of the rapid increase in population, and desalination of saltwater has gained popularity as an alternative water treatment method in recent years. To date, the forward osmosis-reverse osmosis (FO-RO) hybrid technology has been proposed as a low-energy and environmentally friendly next-generation seawater desalination process. Scaling up the FO-RO hybrid system significantly affects the success of a commercial-scale process. However, neither the ideal structure nor the membrane components for plate-and-frame FO (PFFO) and spiral-wound FO (SWFO) are known. This study aims to explore and optimize the performance of SWFO-RO and PFFO-RO hybrid element-scale systems in the desalination of seawater. The results showed that both hybrid systems could yield high water recovery under optimal operating conditions. The prediction of the system performance (water flux and reverse salt flux) by artificial intelligence was considerably better (R > 0.99, root mean square error <5%) than that of conventional mass balance models. A Markov-based decision tree successfully classified the water flux level in hybrid systems. An optimal set of operational conditions for each membrane system was proposed. For example, in RO, a combination of the feed solution (FS) flow rate (≥17.5 L/min), FS concentration (<17,500 ppm), and operation pressure (<35 bar) would result in high water permeability (>40 LMH). In addition, five SWFO elements and four PFFO elements should be the optimal numbers of FO membranes in the hybrid FO-RO system for effective seawater desalination, especially for long-term operation.

2.
Biotechnol Bioeng ; 119(8): 2250-2260, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35445397

RESUMO

Pikromycin is an important precursor of drugs, for example, erythromycin. Hence, systems metabolic engineering for the enhanced pikromycin production can contribute to the development of pikromycin-related drugs. In this study, metabolic genes in Streptomyces venezuelae were systematically engineered for enhanced pikromycin production. For this, a genome-scale metabolic model of S. venezuelae was reconstructed and simulated, which led to the selection of 11 metabolic gene targets. These metabolic genes, including four overexpression targets and seven knockdown targets, were individually engineered first. Next, two overexpression targets and two knockdown targets were selected based on the 11 strains' production performances to engineer two to four of these genes together for the potential synergistic effects on the pikromycin production. As a result, the NM1 strain with AQF52_RS24510 (methenyltetrahydrofolate cyclohydrolase/methylenetetrahydrofolate dehydrogenase) overexpression and AQF52_RS30320 (sulfite reductase) knockdown showed the best production performance among all the 22 strains constructed in this study. Fed-batch fermentation of the NM1 strain produced 295.25 mg/L of pikromycin, by far the best production titer using the native producer S. venezuelae, to the best of our knowledge. The systems metabolic engineering strategy demonstrated herein can also be applied to the overproduction of other secondary metabolites using S. venezuelae.


Assuntos
Engenharia Metabólica , Streptomyces , Macrolídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
3.
Environ Geochem Health ; 42(6): 1655, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32495024
4.
Curr Opin Biotechnol ; 65: 163-170, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32302888

RESUMO

Systems metabolic engineering attempts to engineer a production host's biological network to overproduce valuable chemicals and materials in a sustainable manner. In contrast to genome-scale metabolic models that are well established, regulatory network models have not been sufficiently considered in systems metabolic engineering despite their importance and recent notable advances. In this paper, recent studies on inferring and characterizing regulatory networks at both transcriptional and translational levels are reviewed. The recent studies discussed herein suggest that their corresponding computational methods and models can be effectively applied to optimize a production host's regulatory networks for the enhanced biological production. For the successful application of regulatory network models, datasets on biological sequence-phenotype relationship need to be more generated.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas , Redes Reguladoras de Genes , Genoma , Aprendizado de Máquina , Redes e Vias Metabólicas/genética , Modelos Biológicos
5.
J Sci Food Agric ; 100(10): 4029-4039, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32338369

RESUMO

BACKGROUND: The polishing process plays a key role in determining the beneficial quality of rice. However, the effects of polishing on human exposure to essential and toxic elements are not well reported. This study evaluated the effects of polishing on the levels of essential and toxic elements in rice grains and evaluated the status of their daily intake using probabilistic assessment. RESULTS: The levels of essential elements decreased as the degree of polishing increased. The highest reduction percentages of essential elements [24% of copper (Cu), 26% of nickel (Ni), and 52% of manganese (Mn)] were found after the first polishing step. The highest zinc (Zn) reduction (15%) was found after the fourth polishing step. For toxic elements, polishing significantly reduced the arsenic (As) concentration (15-31%) from that of the whole grains, of which 26% was removed after the first step. CONCLUSION: Polishing removed both essential and toxic elements from rice grains. The highest losses of Cu, Mn, Ni, and As were found after the first polishing step since these elements generally localize in the aleurone layers of rice grains. The last polishing step caused a significant Zn reduction from the grain. Polishing had no significant effect on the cadmium (Cd) concentration in grains. The consumption of all types of rice could not supply sufficient amounts of all microelements except Mn to maintain optimum health. Both As and Cd intake levels were lower than the benchmarks of toxic health effects. Thus, the potential health impacts of both of these elements in rice can be neglected. © 2020 Society of Chemical Industry.


Assuntos
Oryza/química , Oryza/metabolismo , Oligoelementos/análise , Oligoelementos/metabolismo , Arsênio/análise , Arsênio/metabolismo , Cádmio/análise , Cádmio/metabolismo , Cobre/análise , Cobre/metabolismo , Manipulação de Alimentos , Humanos , Manganês/análise , Manganês/metabolismo , Níquel/análise , Níquel/metabolismo , Sementes/química , Sementes/metabolismo
6.
Chemosphere ; 233: 660-666, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31195270

RESUMO

Ammonia in gas phase has an unpleasant smell and is hazardous to human health. Though activated carbon has been widely used as a representative adsorbent, it is significantly vulnerable to humidity. In the study, a nonwoven fibrous polypropylene polymer was synthesized using a photo-graft reaction with imidazole followed by quaternization with CH3I. The time of each reaction was optimized for the maximum adsorption. The FT-IR confirmed that 1-vinyl imidazole (Vim) and methyl group (-CH3) were successfully introduced into PP fibers. The Langmuir isotherm characterized that the adsorption capacity was 44.84 mg NO3-N g-1. The adsorption intensity, 1/n, by Freundlich adsorption isotherm was 0.41 indicating that the adsorption of NO3-N onto PP-g-Vim-CH3I was favorable at the studied conditions. In the gas phase, maximum adsorption of was calculated to be 40 ±â€¯0.69 mg NH3 g-1 by BET model. Though the adsorption amount decreased by 2.5 times as the temperature increased from 15 °C to 45 °C, the amounts and rates of adsorption were not influenced by humidity. In conclusion, the synthesized PP-g-Vim-CH3I was able to ammonia in the gas phase at a range of humidity.


Assuntos
Amônia/análise , Imidazóis/química , Modelos Químicos , Polipropilenos/química , Adsorção , Amônia/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
7.
Environ Geochem Health ; 41(1): 447-460, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30132092

RESUMO

Soil stabilization is a remedial technique that reduces the exposure of the soil environment to soil contaminants. Its efficacy can be assessed by determining whether the environmental availability of a contaminant decreases following treatment. We evaluated several chemical leaching treatments by assessing both contaminant leachability and bioaccumulation in the earthworm Eisenia fetida, and determined the most effective treatment for achieving soil stabilization. Soil samples contaminated with As, Cd, Cu, Pb, and/or Zn were collected from abandoned mine areas and stabilized by adding limestone and steel slag (5% and 2% w/w, respectively). All leaching and earthworm tests were conducted using both contaminated and stabilized soils. In addition to bioaccumulation in earthworms, several toxicity parameters (number of cocoons, growth changes, and survival rates) were also assessed to determine the effects of the treatments on the earthworms. The study showed that treatment of soil with EDTA-NH4OAc resulted in a significant decrease in contaminant leachability following soil stabilization. There was an increase in survival and growth of earthworms exposed to the stabilized soil compared with those exposed to the non-stabilized soil. Bioaccumulation in earthworms was found to be statistically correlated with the leachability of As by EDTA-NH4OAc. We conclude that limestone and steel slag effectively decreased the availability of heavy metals in the soil and reduced the toxicity to earthworms. Leaching with EDTA-NH4OAc has the potential to be predictive in estimating the bioavailability of As in soils, but further studies are needed if it is to be proposed as a standard method.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais Pesados/análise , Oligoquetos/metabolismo , Poluentes do Solo/análise , Solo/química , Animais , Bioensaio , Disponibilidade Biológica , Metais Pesados/farmacocinética , Oligoquetos/crescimento & desenvolvimento , Oligoquetos/fisiologia , Poluentes do Solo/farmacocinética
8.
J Environ Sci (China) ; 66: 50-60, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628108

RESUMO

With the increase in silver (Ag)-based products in our lives, it is essential to test the potential toxicity of silver nanoparticles (AgNPs) and silver ions (Ag ions) on living organisms under various conditions. Here, we investigated the toxicity of AgNPs with Ag ions to Escherichia coli K-12 strain under various conditions. We observed that both AgNPs and Ag ions display antibacterial activities, and that Ag ions had higher toxicity to E. coli K-12 strain than AgNPs under the same concentrations. To understand the toxicity of AgNPs at a cellular level, reactive oxygen species (ROS) enzymes were detected for use as antioxidant enzymatic biomarkers. We have also studied the toxicity of AgNPs and Ag ions under various coexistence conditions including: fixed total concentration, with a varied the ratio of AgNPs to Ag ions; fixed the AgNPs concentration and then increased the Ag ions concentration; fixed Ag ions concentration and then increasing the AgNPs concentration. Exposure to AgNPs and Ag ions clearly had synergistic toxicity; however, decreased toxicity (for a fixed AgNPs concentration of 5mg/L, after increasing the Ag ions concentration) to E. coli K-12 strain. AgNPs and Ag ions in the presence of L-cysteine accelerated the bacterial cell growth rate, thereby reducing the bioavailability of Ag ions released from AgNPs under the single and coexistence conditions. Further works are needed to consider this potential for AgNPs and Ag ions toxicity across a range of environmental conditions. ENVIRONMENTAL SIGNIFICANCE STATEMENT: As silver nanoparticles (AgNPs)-based products are being broadly used in commercial industries, an ecotoxicological understanding of the AgNPs being released into the environment should be further considered. Here, we investigate the comparative toxicity of AgNPs and silver ions (Ag ions) to Escherichia coli K-12 strain, a representative ecotoxicological bioreporter. This study showed that toxicities of AgNPs and Ag ions to E. coli K-12 strain display different relationships when existing individually or when coexisting, and in the presence of L-cysteine materials. These findings suggest that the toxicology research of nanomaterials should consider conditions when NPs coexist with and without their bioavailable ions.


Assuntos
Antibacterianos/toxicidade , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Íons , Testes de Toxicidade
9.
Nanoscale ; 9(8): 2883-2894, 2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28177016

RESUMO

The potential copper binding sites in aptamers have been predicted on the basis of secondary structures and the binding affinity of aptamers with copper. Out of the 4 aptamers (Cu-A1 to Cu-A4) selected by SELEX and examined in the present study, the Cu-A2 aptamer shows the highest binding affinity to copper with the lowest KD value of 1.83 × 10-11 M. In order to confirm the binding of copper to the proposed region, the binding affinity was experimentally validated using mutation and deletion analysis. We have confirmed that the high G-C pairing patterns and short stem-interval distance play important roles in copper binding. Aptamer specificity was also verified against diverse heavy metals. We also demonstrate an Aptamer Integrated Recovery Platform (AIRP) to recover copper from acidic mine drainage. AIRP can be easily regenerated at least 20 times without significant deterioration of the retrieval performance. To the best of our knowledge, AIRP is the first demonstration of copper specific recovery using aptamers. This can be scaled up and would have diverse applications in metal contaminated water treatment, recovery and as a potential biosensor for environmental analysis, monitoring, and risk assessment.

10.
Chemosphere ; 171: 468-475, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28039830

RESUMO

The single particle-inductively coupled plasma-mass spectrometry was applied to characterize the aggregates of AgNPs. was applied to characterize the aggregates of AgNPs. Two sizes of citrate-AgNPs and PVP-AgNPs were used at relatively high and predicted environmental concentrations under various ionic strengths. Citrate-AgNP aggregated with increases in the ionic strength, whereas PVP-AgNPs were sterically stable. The critical coagulation concentrations were 85 mM and 100 mM NaNO3 for 60 nm and 100 nm citrate-AgNPs at 2 mg L-1 as total Ag obtained by dynamic light scattering (DLS). At 2 mg L-1 as total Ag, the mass of an aggregate gradually increased with increasing ionic strength for both citrate-AgNP during spICP-MS analyses. The average number of single particles derived from the mass in an aggregate was calculated to be 8.68 and 5.95 for 60 nm and 100 nm citrate-AgNPs at 85 mM and 100 mM NaNO3, respectively after 2 h. The mass fractal dimensions were determined to be 2.97 and 2.83, further implying that the aggregate structures were very rigid and compact. Only marginal increases in the average mass and number of single particles in the aggregate units were found during 24 h under environmentally relevant AgNP concentrations. The average number of single particles constituting an aggregate unit for 60 nm and 100 nm citrate-AgNPs was 1.24 and 1.37 after 24 h at a high ionic strength. These results indicate that under environmentally relevant conditions, the collision frequency is predominant in the aggregation and that NPs are likely to encounter natural colloids such as clay and organic matter to form hetero-aggregates.


Assuntos
Nanopartículas Metálicas/química , Prata/química , Ácido Cítrico/química , Espectrometria de Massas/métodos , Povidona/química
11.
Chemosphere ; 143: 115-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26163157

RESUMO

Daphnia magna were exposed to nano-sized CdSe/ZnS quantum dots (QDs) having three different surface coatings. QDs were investigated for their aqueous stability in the test media (hard reconstituted laboratory water) and for their uptake, elimination, and in-vivo dissolution. Positively charged QDs (QEI) and negatively charged QDs (QSH) were electrostatically stable, whereas neutrally charged QDs (QSA) showed aggregation and sedimentation over 48-h. After 24h of exposure to QDs (100µg/L as total Cd), the D. magna whole body Cd concentration significantly increased with no mortality for all QDs. Uptake patterns differed among the three coatings and Cd concentration reached 1460±50, 1014±99, and 584±81µg Cd/g dry wt for QEI, QSH, and QSA, respectively. Significant amounts of QEI and QSA (40% and 43%, respectively) remained in the D. magna after 24h of depuration, while 89% QSH were readily excreted within the initial 1h of the depuration stage. Soluble Cd was released from QDs during both the uptake and depuration. Release of Cd was higher in QEI and QSA than QSH, possibly resulting from the longer retention of QEI and QSA in the D. magna than QSH. These results imply that the surface charge of QDs plays a significant role in both the exposure to organisms and the in-vivo dissolution of nanoparticles.


Assuntos
Compostos de Cádmio/análise , Daphnia/efeitos dos fármacos , Compostos de Selênio/análise , Sulfetos/análise , Compostos de Zinco/análise , Animais , Água Doce , Concentração de Íons de Hidrogênio , Nanopartículas , Concentração Osmolar , Pontos Quânticos , Solubilidade , Eletricidade Estática , Propriedades de Superfície
12.
Chemosphere ; 143: 106-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26195431

RESUMO

A photo-oxidation process using UV-LEDs and TiO2 was studied for removal of cyanide contained in mine wastewater and leachates. This study focused on monitoring of a TiO2-catalyzed LED photo-oxidation process, particularly emphasizing the effects of TiO2 form and light source on the efficiency of cyanide removal. The generation of hydroxyl radicals was also examined during the process to evaluate the mechanism of the photo-catalytic process. The apparent removal efficiency of UV-LEDs was lower than that achieved using a UV-lamp, but cyanide removal in response to irradiation as well as consumption of electrical energy was observed to be higher for UV-LEDs than for UV-lamps. The Degussa P25 TiO2 showed the highest performance of the TiO2 photo-catalysts tested. The experimental results indicate that hydroxyl radicals oxidize cyanide to OCN(-), NO2(-), NO3(-), HCO3(-), and CO3(2-), which have lower toxicity than cyanide. In addition, the overall efficacy of the process appeared to be significantly affected by diverse operational parameters, such as the mixing ratio of anatase and rutile, the type of gas injected, and the number of UV-LEDs used.


Assuntos
Cianetos/análise , Monitoramento Ambiental/métodos , Radical Hidroxila , Titânio/análise , Poluentes Químicos da Água/análise , Catálise , Luz , Mineração , Oxirredução , Oxigênio/química , Fotoquímica/métodos , Águas Residuárias
13.
Chemosphere ; 143: 99-105, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26188498

RESUMO

Citrate-coated AgNPs (c-AgNPs) have negatively charged surfaces and their surface interactions with heavy metals can affect metal toxicity in aquatic environments. This study used Daphnia magna to compare the acute toxicities and bioaccumulation of As(V), Cd, and Cu when they interact with c-AgNPs. The 24-h acute toxicities of As(V) and Cu were not affected by the addition of c-AgNPs, while bioaccumulation significantly decreased in the presence of c-AgNPs. In contrast, both the 24-h acute toxicity and bioaccumulation of Cd increased in the presence of c-AgNPs. These toxicity and bioaccumulation trends can be attributed to the interactions between the AgNP surface and the heavy metals. As(V) and c-AgNPs compete by negative charge, decreasing As(V) toxicity. Copper adheres readily to c-AgNP citrate, decreasing Cu bioavailability, and thus reducing Cu toxicity and bioaccumulation. Citrate complexes with divalent cations such as Ca and Mg reduce the competition between divalent cations and Cd on biotic ligand, increasing toxicity and bioaccumulation of Cd. This study shows that surface properties determine the effect of c-AgNPs on heavy metal toxicities and bioaccumulations; hence, further studies on the effect of nanoparticle by it surface properties are warranted.


Assuntos
Ácido Cítrico/química , Daphnia/efeitos dos fármacos , Nanopartículas Metálicas/química , Metais Pesados/toxicidade , Nanopartículas/química , Animais , Cálcio/química , Cobre/farmacologia , Monitoramento Ambiental/métodos , Ligantes , Magnésio/química , Nitrato de Prata/química , Propriedades de Superfície
14.
Int J Environ Res Public Health ; 12(10): 13523-41, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26516879

RESUMO

Arsenic contamination in drinking water has become an increasingly important issue due to its high toxicity to humans. The present study focuses on the development of the yttrium-based adsorbents, with basic yttrium carbonate (BYC), Ti-loaded basic yttrium carbonate (Ti-loaded BYC) and yttrium hydroxide prepared using a co-precipitation method. The Langmuir isotherm results confirmed the maximum adsorption capacity of Ti-loaded BYC (348.5 mg/g) was 25% higher than either BYC (289.6 mg/g) or yttrium hydroxide (206.5 mg/g) due to its increased specific surface area (82 m²/g) and surface charge (PZC: 8.4). Pseudo first- and second-order kinetic models further confirmed that the arsenate removal rate of Ti-loaded BYC was faster than for BYC and yttrium hydroxide. It was subsequently posited that the dominant removal mechanism of BYC and Ti-loaded BYC was the carbonate-arsenate ion exchange process, whereas yttrium hydroxide was regarded to be a co-precipitation process. The Ti-loaded BYC also displayed the highest adsorption affinity for a wide pH range (3-11) and in the presence of coexisting anionic species such as phosphate, silicate, and bicarbonate. Therefore, it is expected that Ti-loaded BYC can be used as an effective and practical adsorbent for arsenate remediation in drinking water.


Assuntos
Arseniatos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Ítrio/química , Adsorção , Carbonatos/química , Hidróxidos/química , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química
15.
Springerplus ; 4: 518, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26405638

RESUMO

In order to assess the ecological effect of acid mine drainage, metal mine (Dalsung) and coal mine (Samtan) drainage in South Korea were collected. The each mine drainage then investigated by whole effluent toxicity test (WET) and toxicity identification evaluation (TIE). WET results demonstrated that DS leachate and ST mine water is more toxic than other mine drainage due to the presence of cationic metals and acidic pH. TIE results revealed that the acidic pH and copper (Cu) could be the main toxicants in both mine drainage. The strong acidic pH (pH < 3.5) enhanced the metal toxicity by increase of metal activity and bioavailability. The toxicity of most mine drainage revealed that the positive correlation between metal concentration and toxicity unit (TU). The regression data between TU and sum of cumulative criterion unit (CCU) demonstrated the reasonable statistical significance (R = 0.89; p < 0.01), however the excessive iron concentration in mine drainage could be an inhibition factor to estimate the toxicity by the effect of amorphous iron precipitate.

16.
Environ Health Toxicol ; 29: e2014016, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25384386

RESUMO

OBJECTIVES: Rapid increase in engineered nanoparticles (ENPs) in many goods has raised significant concern about their environmental safety. Proper methodologies are therefore needed to conduct toxicity and exposure assessment of nanoparticles in the environment. This study reviews several analytical techniques for nanoparticles and summarizes their principles, advantages and disadvantages, reviews the state of the art, and offers the perspectives of nanometrology in relation to ENP studies. METHODS: Nanometrology is divided into five techniques with regard to the instrumental principle: microscopy, light scattering, spectroscopy, separation, and single particle inductively coupled plasma-mass spectrometry. RESULTS: Each analytical method has its own drawbacks, such as detection limit, ability to quantify or qualify ENPs, and matrix effects. More than two different analytical methods should be used to better characterize ENPs. CONCLUSIONS: In characterizing ENPs, the researchers should understand the nanometrology and its demerits, as well as its merits, to properly interpret their experimental results. Challenges lie in the nanometrology and pretreatment of ENPs from various matrices; in the extraction without dissolution or aggregation, and concentration of ENPs to satisfy the instrumental detection limit.

17.
Appl Microbiol Biotechnol ; 98(20): 8719-28, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25219535

RESUMO

Quantitative PCR (qPCR) enables rapid and sensitive gene quantification and is widely used in genomics, such as biological, medical, environmental, and food sciences. However, sample pretreatment requires the use of conventional DNA extraction kits which are time-consuming and labor intensive. In this study, we investigated four physical lysis only (PLO) methods which are rapid and could serve as alternatives to conventional DNA extraction kits. These PLO methods are bead mill, heating, sonication, and freeze-thaw. Using ethidium bromide-based assay, their performance was evaluated and compared. The effects of cell debris and its removal were also investigated. Bead mill method without cell debris removal appeared to yield the best qPCR results among the four PLO methods. In addition, bead mill method also performed better than conventional DNA extraction kits. It is probably due to the substantial loss of DNA material during the extensive purification of the conventional DNA extraction kits. The bead mill method has been demonstrated to successfully quantify 10(2) to 10(7) copies of the PAH-RHDα gene of Pseudomonas putida.


Assuntos
DNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Manejo de Espécimes/métodos , Pseudomonas putida/genética
18.
Environ Monit Assess ; 186(8): 4905-23, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24760657

RESUMO

This study constitutes the first systematic risk assessment in the Lao PDR of the safety of groundwater for consumption. Groundwater and hair samples were collected from seven Lao provinces to determine the quantitative health impact of heavy metals through ingestion exposure. Contamination levels for arsenic (As; 46.0 %) and barium (Ba; 16.2 %) exceeded World Health Organization (WHO) guidelines, especially in Mekong River floodplains. A USEPA assessment model for health risks from daily groundwater ingestion, with adjustments for local water consumption values, was applied to estimate the size of the population at risk for noncarcinogenic and carcinogenic health problems. As was the only element contributing to noncarcinogenic health risks in all contaminated areas. The populations of Bolikhamxai, Savannakhet, Saravane, Champasak, and Attapeu, moreover, were at risks of cancer. In addition to the As groundwater concentration factor, noncarcinogenic and carcinogenic risks were positively correlated with the average daily dose of As, exposure duration, and subject body weight. The level of As in hair correlated with groundwater consumption and average daily dose of As. 25.5 % of the population (n = 228) showed As levels in hair above the toxicity level.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Água Subterrânea/química , Metais Pesados/análise , Arsênio/análise , Exposição Ambiental/análise , Monitoramento Ambiental , Cabelo/química , Humanos , Laos , Modelos Químicos , Medição de Risco
19.
Environ Technol ; 35(1-4): 251-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600863

RESUMO

Arsenite sorption from aqueous solutions was investigated using two-line ferrihydrite at room temperature, as a function of solution pH and arsenite loading. The isotherms, pH envelopes, and kinetics of arsenite sorption were characterized and its mechanism was elucidated via X-ray absorption spectroscopic studies. Arsenite sorption showed only slight pH dependence with a sorption maximum centered around pH 8.0. The Langmuir isotherm is most appropriate for arsenite sorption over the wide range of pH, indicating the homogenous and monolayer sorption of arsenite. The kinetic study demonstrated that arsenite sorption onto two-line ferrihydrite is considerably fast and the equilibrium is achieved within the reaction time of 3 h. X-ray absorption near-edge structure spectroscopy elucidated a slight change in oxidation state of arsenite for the initial concentration of 13.35 mM at pH 4. The extended X-ray absorption fine structure (EXAFS) spectroscopy results indicate that types of surface complexes of arsenite appeared to be very similar to those proposed by the previous studies in that the bidentate binuclear corner-sharing (2C) complex is predominant at all the surface loadings. However, our EXAFS results suggest that regardless ofpH, the mixed complexes of2C and bidentate mononuclear edge-sharing surface complex (2E) as well as the 2C complex are favoured at low and intermediate surface loadings, but only the 2C complex is dominant at high surface loading. Overall, the EXAFS results support the efficient removal of arsenite by the two-line ferrihydrite through the formation of highly stable inner-sphere surface complexes, such as 2C complex.


Assuntos
Arsenitos/química , Arsenitos/isolamento & purificação , Compostos Férricos/química , Espectroscopia Fotoeletrônica/métodos , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
20.
Environ Sci Pollut Res Int ; 20(12): 8326-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24026203

RESUMO

To better understand arsenic (As) bioaccumulation, a soil invertebrate species was exposed to 17 field soils contaminated with arsenic due to mining activity. Earthworms (Eisenia fetida) were kept in the soils for 70 days under laboratory conditions, as body burden increased and failed to reach equilibrium in all soils. After 70 days of exposure, XANES spectra determined that As was biotransformed to a highly reduced form. Uptake kinetics for As was calculated using one compartment model. Stepwise multiple regression suggested that sorbed As in soils are bioaccessible, and uptake is governed by soil properties (iron oxide, sulfate, and dissolved organic carbon) that control As mobility in soils. As in soil solution are highly related to uptake rate except four soils which had relatively high chloride or phosphate. The results imply that uptake of As is through As interaction with soil characteristics as well as direct from the soil solution. Internal validation showed that empirically derived regression equations can be used for predicting As uptake as a function of soil properties within the range of soil properties in the data set.


Assuntos
Arsênio/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Animais , Arsênio/análise , Cloretos/análise , Cloretos/química , Mineração , Modelos Biológicos , Modelos Químicos , Oligoquetos/fisiologia , Fosfatos/análise , Fosfatos/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...