Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542701

RESUMO

The composition and diversity of gut microbiota significantly influence the immune system and are linked to various diseases, including inflammatory and allergy disorders. While considerable research has focused on exploring single bacterial species or consortia, the optimal strategies for microbiota-based therapeutics remain underexplored. Specifically, the comparative effectiveness of bacterial consortia versus individual species warrants further investigation. In our study, we assessed the impact of the bacterial consortium MPRO, comprising Lactiplantibacillus plantarum HY7712, Bifidobacterium animalis ssp. lactis HY8002, and Lacticaseibacillus casei HY2782, in comparison to its individual components. The administration of MPRO demonstrated enhanced therapeutic efficacy in experimental models of atopic dermatitis and inflammatory colitis when compared to single strains. MPRO exhibited the ability to dampen inflammatory responses and alter the gut microbial landscape significantly. Notably, MPRO administration led to an increase in intestinal CD103+CD11b+ dendritic cells, promoting the induction of regulatory T cells and the robust suppression of inflammation in experimental disease settings. Our findings advocate the preference for bacterial consortia over single strains in the treatment of inflammatory disorders, carrying potential clinical relevance.


Assuntos
Bifidobacterium animalis , Dermatite Atópica , Probióticos , Humanos , Inflamação , Probióticos/uso terapêutico , Probióticos/farmacologia , Bifidobacterium animalis/fisiologia , Bactérias , Anti-Inflamatórios/farmacologia
2.
Immune Netw ; 23(1): e7, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36911805

RESUMO

The mammalian intestines harbor trillions of commensal microorganisms composed of thousands of species that are collectively called gut microbiota. Among the microbiota, bacteria are the predominant microorganism, with viruses, protozoa, and fungi (mycobiota) making up a relatively smaller population. The microbial communities play fundamental roles in the maturation and orchestration of the immune landscape in health and disease. Primarily, the gut microbiota modulates the immune system to maintain homeostasis and plays a crucial role in regulating the pathogenesis and pathophysiology of inflammatory, neuronal, and metabolic disorders. The microbiota modulates the host immune system through direct interactions with immune cells or indirect mechanisms such as producing short-chain acids and diverse metabolites. Numerous researchers have put extensive efforts into investigating the role of microbes in immune regulation, discovering novel immunomodulatory microbial species, identifying key effector molecules, and demonstrating how microbes and their key effector molecules mechanistically impact the host immune system. Consequently, recent studies suggest that several microbial species and their immunomodulatory molecules have therapeutic applicability in preclinical settings of multiple disorders. Nonetheless, it is still unclear why and how a handful of microorganisms and their key molecules affect the host immunity in diverse diseases. This review mainly discusses the role of microbes and their metabolites in T helper cell differentiation, immunomodulatory function, and their modes of action.

3.
Adv Healthc Mater ; 11(13): e2102667, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35397156

RESUMO

Multifaceted functions displayed by both pro- and anti-inflammatory properties of chitosan hinder its effective development as an immunomodulatory agent. Herein, the contributions of the bending stiffness of chitosan with regard to its immune regulatory properties toward inflammation are investigated. The anti-inflammatory properties of chitosan molecular weight (MW) with a shorter (≈1 kDa) or longer (≈15 kDa) than the persistent length (LP ) are compared using immunological assays and nanomechanics-based experiments on the surface forces apparatus (SFA). Interestingly, 1 kDa chitosan significantly enhances the generation of anti-inflammatory regulatory T cells (Tregs) through the Dectin-1-dependent pattern recognition receptor (PRR) on antigen-presenting cells. SFA analyses also show a similar trend of interaction forces between chitosan and diverse PRRs depending on their MW. The results obtained in the immunological and nanomechanical experiments are consistent and imply that the binding features of PRRs vary depending on the MW of chitosan, which may alter immune activity. In accordance, in vivo administration of only 1 kDa represses inflammatory responses and suppresses the progression of experimental colitis. This study elucidates a previously unexplored bending stiffness-dependent immune regulatory property of chitosan and suggests the applicability of low MW (rod-like) chitosan as a pharmaceutical ingredient to treat diverse inflammatory disorders.


Assuntos
Quitosana , Células Apresentadoras de Antígenos , Quitosana/química , Imunidade , Peso Molecular , Receptores de Reconhecimento de Padrão
4.
Nat Commun ; 12(1): 3611, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127673

RESUMO

Yeast is an integral part of mammalian microbiome, and like commensal bacteria, has the potential of being harnessed to influence immunity in clinical settings. However, functional specificities of yeast-derived immunoregulatory molecules remain elusive. Here we find that while under steady state, ß-1,3-glucan-containing polysaccharides potentiate pro-inflammatory properties, a relatively less abundant class of cell surface polysaccharides, dubbed mannan/ß-1,6-glucan-containing polysaccharides (MGCP), is capable of exerting potent anti-inflammatory effects to the immune system. MGCP, in contrast to previously identified microbial cell surface polysaccharides, through a Dectin1-Cox2 signaling axis in dendritic cells, facilitates regulatory T (Treg) cell induction from naïve T cells. Furthermore, through a TLR2-dependent mechanism, it restrains Th1 differentiation of effector T cells by suppressing IFN-γ expression. As a result, administration of MGCP display robust suppressive capacity towards experimental inflammatory disease models of colitis and experimental autoimmune encephalomyelitis (EAE) in mice, thereby highlighting its potential therapeutic utility against clinically relevant autoimmune diseases.


Assuntos
Imunomodulação/efeitos dos fármacos , Imunomodulação/imunologia , Polissacarídeos/imunologia , Saccharomyces cerevisiae/metabolismo , beta-Glucanas/imunologia , Animais , Linfócitos T CD4-Positivos , Diferenciação Celular/efeitos dos fármacos , Colite/imunologia , Colite/patologia , Ciclo-Oxigenase 2 , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental , Glucanos , Proteínas de Homeodomínio/genética , Imunidade , Lectinas Tipo C , Mananas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Saccharomyces cerevisiae/genética , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Células Th1 , Zimosan , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia
6.
Immunity ; 49(6): 1034-1048.e8, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30566881

RESUMO

Single-nucleotide polymorphisms in ETS1 are associated with systemic lupus erythematosus (SLE). Ets1-/- mice develop SLE-like symptoms, suggesting that dysregulation of this transcription factor is important to the onset or progression of SLE. We used conditional deletion approaches to examine the impact of Ets1 expression in different immune cell types. Ets1 deletion on CD4+ T cells, but not B cells or dendritic cells, resulted in the SLE autoimmunity, and this was associated with the spontaneous expansion of T follicular helper type 2 (Tfh2) cells. Ets1-/- Tfh2 cells exhibited increased expression of GATA-3 and interleukin-4 (IL-4), which induced IgE isotype switching in B cells. Neutralization of IL-4 reduced Tfh2 cell frequencies and ameliorated disease parameters. Mechanistically, Ets1 suppressed signature Tfh and Th2 cell genes, including Cxcr5, Bcl6, and Il4ra, thus curbing the terminal Tfh2 cell differentiation process. Tfh2 cell frequencies in SLE patients correlated with disease parameters, providing evidence for the relevance of these findings to human disease.


Assuntos
Diferenciação Celular/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Proteína Proto-Oncogênica c-ets-1/imunologia , Células Th2/imunologia , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Células Th2/metabolismo
7.
Sci Immunol ; 3(28)2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341145

RESUMO

Dysregulation of intestinal microflora is linked to inflammatory disorders associated with compromised immunosuppressive functions of Foxp3+ T regulatory (Treg) cells. Although mucosa-associated commensal microbiota has been implicated in Treg generation, molecular identities of the "effector" components controlling this process remain largely unknown. Here, we have defined Bifidobacterium bifidum as a potent inducer of Foxp3+ Treg cells with diverse T cell receptor specificity to dietary antigens, commensal bacteria, and B. bifidum itself. Cell surface ß-glucan/galactan (CSGG) polysaccharides of B. bifidum were identified as key components responsible for Treg induction. CSGG efficiently recapitulated the activity of whole bacteria and acted via regulatory dendritic cells through a partially Toll-like receptor 2-mediated mechanism. Treg cells induced by B. bifidum or purified CSGG display stable and robust suppressive capacity toward experimental colitis. By identifying CSGG as a functional component of Treg-inducing bacteria, our studies highlight the immunomodulatory potential of CSGG and CSGG-producing microbes.


Assuntos
Bifidobacterium bifidum/imunologia , Fatores de Transcrição Forkhead/imunologia , Polissacarídeos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Bifidobacterium bifidum/citologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
J Immunol ; 200(5): 1865-1875, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29374078

RESUMO

IL-10 is a pleiotropic cytokine with multifaceted functions in establishing immune homeostasis. Although expressed by Th1 and Th2 cells, conventional Th1 cells produce marginal levels of IL-10 compared with their Th2 counterparts. In this study, we investigated the epigenetic mechanisms of Il-10 gene expression in Th1 cells. Bioinformatics EMBOSS CpG plot analysis and bisulfite pyrosequencing revealed three CpG DNA methylation sites in the Il-10 gene locus. Progressive DNA methylation at all of the CpG regions of interest (ROIs) established a repressive program of Il-10 gene expression in Th1 cells. Interestingly, Th1 cells treated with IL-12 and IL-27 cytokines, thereby mimicking a chronic inflammatory condition in vivo, displayed a significant increase in IL-10 production that was accompanied by selective DNA demethylation at ROI 3 located in intron 3. IL-10-producing T cells isolated from lymphocytic choriomeningitis virus-infected mice also showed enhanced DNA demethylation at ROI 3. Binding of STAT1 and STAT3 to demethylated ROI 3 enhanced IL-10 expression in an IL-12/IL-27-dependent manner. Accordingly, CD4+ T cells isolated from STAT1- or STAT3-knockout mice were significantly defective in IL-10 production. Our data suggest that, although stably maintained DNA methylation at the promoter may repress IL-10 expression in Th1 cells, locus-specific reversible DNA demethylation may serve as a threshold platform to control transient Il-10 gene expression.


Assuntos
Metilação de DNA/genética , Interleucina-10/genética , Células Th1/fisiologia , Animais , Linfócitos T CD4-Positivos/fisiologia , Linhagem Celular , Ilhas de CpG/genética , Epigênese Genética/genética , Células HEK293 , Humanos , Interleucina-27/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT3/genética , Células Th2/fisiologia
9.
J Allergy Clin Immunol ; 137(2): 426-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26303344

RESUMO

BACKGROUND: Although the hygiene hypothesis suggests that microbial infections could subvert asthma and thus a microbial product might serve as a therapeutic adjuvant for asthma, the relationship between bacterial components and asthma is complex. Recently, low levels of flagellin, the Toll-like receptor (TLR) 5 ligand, have been reported to promote asthma. OBJECTIVE: We show that a therapeutic dose of flagellin suppresses asthma and that the effect occurs through generating regulatory dendritic cells (rDCs) and regulatory T (Treg) cells. METHODS: Ovalbumin (OVA)-induced wild-type and TLR5 knockout asthmatic mice were treated intranasally with a mixture of OVA and 10 µg of a flagellin B (FlaB; of Vibrio vulnificus). OVA/FlaB-treated rDCs were adoptively transferred to mice with OVA-induced asthma. Anti-CD25 mAb was used to deplete Treg cells. A mixture of house dust mite (HDM) and FlaB was used to treat mice with HDM-induced asthma. Blood CD14(+) monocyte-derived dendritic cells from HDM-sensitive asthmatic patients were treated with FlaB and incubated with autologous CD4(+) T cells. RESULTS: An OVA/FlaB mixture ameliorated OVA-induced asthma by inhibiting TH1/TH2/TH17 responses in a TLR5-dependent manner through generating rDCs and Treg cells. The adoptive transfer of OVA/FlaB-treated dendritic cells inhibited OVA-induced asthma, whereas the depletion of CD25(+) cells eliminated the inhibitory effect. A similar effect of FlaB was observed in mice with HDM-induced asthma. In patients with HDM-sensitive asthma, FlaB-treated rDCs inhibited HDM-stimulated TH1/TH2 responses while enhancing Treg cells in an IL-10-dependent manner. CONCLUSION: These findings collectively suggest that flagellin could be used as a tolerogenic adjuvant to treat allergic asthma.


Assuntos
Asma/imunologia , Asma/metabolismo , Células Dendríticas/imunologia , Flagelina/imunologia , Imunomodulação , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Alérgenos/imunologia , Animais , Asma/genética , Asma/patologia , Asma/terapia , Estudos de Casos e Controles , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Ligantes , Camundongos , Camundongos Knockout , Ovalbumina/imunologia , Pyroglyphidae/imunologia , Linfócitos T Reguladores/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
10.
J Immunol ; 194(4): 1963-74, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25595785

RESUMO

IL-31 is a key mediator of itching in atopic dermatitis (AD) and is preferentially produced by activated CD4(+) T cells and Th2 cells. Although pathophysiological functions of IL-31 have been suggested in diverse immune disorders, the molecular events underlying IL-31 gene regulation are still unclear. In this study we identified the transcription start site and functional promoter involved in IL-31 gene regulation in mouse CD4(+) T cells. TCR stimulation-dependent IL-31 expression was found to be closely linked with in vivo binding of NFAT1 and JunB to the IL-31 promoter. Although NFAT1 alone enhanced IL-31 promoter activity, it was further enhanced in the presence of JunB. Conversely, knockdown of either NFAT1 or JunB resulted in reduced IL-31 expression. NFAT1-deficient CD4(+) T cells showed a significant defect in IL-31 expression compared with wild-type CD4(+) T cells. In agreement with these findings, mice subjected to atopic conditions showed much higher levels of IL-31, which were closely correlated with a significant increase in the number of infiltrated NFAT1(+)CD4(+) T cells into the AD ears. Amelioration of AD progression by cyclosporin A treatment was well correlated with downregulation of IL-31 expressions in CD4(+) T cells and total ear residual cells. In summary, our results suggest a functional cooperation between NFAT1 and JunB in mediating IL-31 gene expression in CD4(+) T cells and indicate that interference with this interaction or their activity has the potential of reducing IL-31-mediated AD symptoms.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Dermatite Atópica/imunologia , Regulação da Expressão Gênica/imunologia , Interleucinas/biossíntese , Fatores de Transcrição NFATC/imunologia , Fatores de Transcrição/imunologia , Animais , Imunoprecipitação da Cromatina , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Interleucinas/genética , Interleucinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Fatores de Transcrição NFATC/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Transcriptoma , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...