Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Exp Mol Med ; 55(10): 2177-2189, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37779138

RESUMO

Enhancing adult neurogenesis in the brain has been suggested as a potential therapeutic strategy for AD. We developed a screening platform, ATRIVIEW®, for molecules that activate neuronal differentiation of adult mouse NSCs. The most potent hit from an FDA-approved drug library was SNR1611 (trametinib), a selective MEK1/2 inhibitor. We found that trametinib increases the levels of P15INK4b and Neurog2, suggesting a mechanism by which MEK1/2 inhibition induces neuronal differentiation. Oral administration of trametinib increased adult neurogenesis in the dentate gyrus and subventricular zone of the 5XFAD AD mouse model. Surprisingly, we also found that trametinib enhanced adult neurogenesis in the cortex. Consequently, trametinib rescued AD pathologies such as neuronal loss and cognitive impairment in 5XFAD mice. Finally, trametinib induced neurogenic differentiation of NSCs derived from AD patient iPSCs, which suggests its potential therapeutic application. Altogether, we suggest that restoration of endogenous adult neurogenesis by trametinib may be a promising therapeutic approach to AD.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/patologia , Camundongos Transgênicos , Neurogênese , Encéfalo/patologia , Modelos Animais de Doenças , Proteínas do Tecido Nervoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...