Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 13(4): 4347-4353, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30946561

RESUMO

Metallic gold nanoparticles (Au NPs) with multilayer Au atoms are useful for plasmonic, chemical, medical, and metamaterial application. In this article, we report the opening of the bandgap in substrate-supported two-dimensional (2D) gold quantum dots (Au QDs) with monolayer Au atoms. Calculations based on density functional theory suggest that 2D Au QDs are energetically favorable over 3D Au clusters when coated on hexagonal boron nitride (BN) surfaces. Experimentally, we find that BN nanotubes (BNNTs) can be used to stabilize 2D Au QDs on their cylindrical surfaces as well as Au atoms, dimers, and trimers. The electrically insulating and optically transparent BNNTs enable the detection of the optical bandgaps of the Au QDs in the visible spectrum. We further demonstrate that the size and shapes of 2D Au QDs could be atomically trimmed and restructured by electron beam irradiation. Our results may stimulate further exploration of energetically stable, metal-based 2D semiconductors, with properties tunable atom by atom.

2.
Molecules ; 21(7)2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27428947

RESUMO

A comprehensive overview of current research progress on boron nitride nanotubes (BNNTs) is presented in this article. Particularly, recent advancements in controlled synthesis and large-scale production of BNNTs will first be summarized. While recent success in mass production of BNNTs has opened up new opportunities to implement the appealing properties in various applications, concerns about product purity and quality still remain. Secondly, we will summarize the progress in functionalization of BNNTs, which is the necessary step for their applications. Additionally, selected potential applications in structural composites and biomedicine will be highlighted.


Assuntos
Compostos de Boro/química , Nanotubos/química , Materiais Biocompatíveis/química , Compostos de Boro/síntese química , Técnicas de Química Sintética , Nanotubos/ultraestrutura , Polímeros/química , Relação Estrutura-Atividade
3.
ACS Appl Mater Interfaces ; 7(47): 26108-16, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26551578

RESUMO

We demonstrate a universal approach to extract one- and two-dimensional nanomaterials from contaminated water, which is based on a microscopic oil-water interface trapping mechanism. Results indicate that carbon nanotubes, graphene, boron nitride nanotubes, boron nitride nanosheets, and zinc oxide nanowires can be successfully extracted from contaminated water at a successful rate of nearly 100%. The effects of surfactants, particle shape, and type of organic extraction fluids are evaluated. The proposed extraction mechanism is also supported by in situ monitoring of the extraction process. We believe that this extraction approach will prove important for the purification of water contaminated by nanoparticles and will support the widespread adoption of nanomaterial applications.

4.
Adv Mater ; 25(33): 4544-8, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23775671

RESUMO

One-dimensional arrays of gold quantum dots (QDs) on insulating boron nitride nanotubes (BNNTs) can form conduction channels of tunneling field-effect transistors. We demonstrate that tunneling currents can be modulated at room temperature by tuning the lengths of QD-BNNTs and the gate potentials. Our discovery will inspire the creative use of nanostructured metals and insulators for future electronic devices.

5.
Nanoscale ; 5(10): 4337-43, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23563061

RESUMO

Topological insulators are novel quantum materials with metallic surface transport but insulating bulk behavior. Often, topological insulators are dominated by bulk contributions due to defect induced bulk carriers, making it difficult to isolate the more interesting surface transport characteristics. Here, we report the synthesis and characterization of nanosheets of a topological insulator Bi2Se3 with variable Sb-doping levels to control the electron carrier density and surface transport behavior. (Bi(1-x)Sb(x))2Se3 thin films of thickness less than 10 nm are prepared by epitaxial growth on mica substrates in a vapor transport setup. The introduction of Sb in Bi2Se3 effectively suppresses the room temperature electron density from ∼4 × 10(13) cm(-2) in pure Bi2Se3 (x = 0) to ∼2 × 10(12) cm(-2) in (Bi(1-x)Sb(x))2Se3 at x ∼ 0.15, while maintaining the metallic transport behavior. At x ≳ ∼0.20, a metal-insulator transition (MIT) is observed, indicating that the system has transformed into an insulator in which the metallic surface conduction is blocked. In agreement with the observed MIT, Raman spectroscopy reveals the emergence of vibrational modes arising from Sb-Sb and Sb-Se bonds at high Sb concentrations, confirming the appearance of the Sb2Se3 crystal structure in the sample. These results suggest that nanostructured chalcogenide films with controlled doping can be a tunable platform for fundamental studies and electronic applications of topological insulator systems.

6.
ACS Nano ; 7(3): 2126-31, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23441571

RESUMO

We report the composition- and gate voltage-induced tuning of transport properties in chemically synthesized Bi2(Te1-xSex)3 nanoribbons. It is found that increasing Se concentration effectively suppresses the bulk carrier transport and induces semiconducting behavior in the temperature-dependent resistance of Bi2(Te1-xSex)3 nanoribbons when x is greater than ∼10%. In Bi2(Te1-xSex)3 nanoribbons with x ≈ 20%, gate voltage enables ambipolar modulation of resistance (or conductance) in samples with thicknesses around or larger than 100 nm, indicating significantly enhanced contribution in transport from the gapless surface states.

7.
J Biomed Mater Res B Appl Biomater ; 100(1): 58-67, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21905215

RESUMO

Metal stents are commonly used to revascularize occluded arteries. A bioabsorbable metal stent that harmlessly erodes away over time may minimize the normal chronic risks associated with permanent implants. However, there is no simple, low-cost method of introducing candidate materials into the arterial environment. Here, we developed a novel experimental model where a biomaterial wire is implanted into a rat artery lumen (simulating bioabsorbable stent blood contact) or artery wall (simulating bioabsorbable stent matrix contact). We use this model to clarify the corrosion mechanism of iron (≥99.5 wt %), which is a candidate bioabsorbable stent material due to its biocompatibility and mechanical strength. We found that iron wire encapsulation within the arterial wall extracellular matrix resulted in substantial biocorrosion by 22 days, with a voluminous corrosion product retained within the vessel wall at 9 months. In contrast, the blood-contacting luminal implant experienced minimal biocorrosion at 9 months. The importance of arterial blood versus arterial wall contact for regulating biocorrosion was confirmed with magnesium wires. We found that magnesium was highly corroded when placed in the arterial wall but was not corroded when exposed to blood in the arterial lumen for 3 weeks. The results demonstrate the capability of the vascular implantation model to conduct rapid in vivo assessments of vascular biomaterial corrosion behavior and to predict long-term biocorrosion behavior from material analyses. The results also highlight the critical role of the arterial environment (blood vs. matrix contact) in directing the corrosion behavior of biodegradable metals.


Assuntos
Implantes Absorvíveis , Teste de Materiais/métodos , Modelos Biológicos , Stents , Animais , Corrosão , Ferro/química , Magnésio/química , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
8.
Langmuir ; 28(2): 1206-16, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22149295

RESUMO

Superhydrophobic surfaces are attractive as self-cleaning protective coatings in harsh environments with extreme temperatures and pH levels. Hexagonal phase boron nitride (h-BN) films are promising protective coatings due to their extraordinary chemical and thermal stability. However, their high surface energy makes them hydrophilic and thus not applicable as water repelling coatings. Our recent discovery on the superhydrophobicity of boron nitride nanotubes (BNNTs) is thus contradicting with the fact that BN materials would not be hydrophobic. To resolve this contradiction, we have investigated BNNT coatings by time-dependent contact angle measurement, thermogravimetry, IR spectroscopy, and electron microscopy. We found that the wettability of BNNTs is determined by the packing density, orientation, length of nanotubes, and the environmental condition. The origins of superhydrophobicity of these BNNT coatings are identified as (1) surface morphology and (2) hydrocarbon adsorbates on BNNTs. Hydrocarbon molecules adsorb spontaneously on the curved surfaces of nanotubes more intensively than on flat surfaces of BN films. This means the surface energy of BNNTs was enhanced by their large curvatures and thus increased the affinity of BNNTs to adsorb airborne molecules, which in turn would reduce the surface energy of BNNTs and make them hydrophobic. Our study revealed that both high-temperature and UV-ozone treatments can remove these adsorbates and lead to restitution of hydrophilic BN surface. However, nanotubes have a unique capability in building a hydrophobic layer of adsorbates after a few hours of exposure to ambient air.


Assuntos
Compostos de Boro/química , Nanotubos , Termodinâmica , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Nanoscale ; 2(10): 2028-34, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20842308

RESUMO

This article provides a concise review of the recent research advancements in boron nitride nanotubes (BNNTs) with a comprehensive list of references. As the motivation of the field, we first summarize some of the attractive properties and potential applications of BNNTs. Then, latest discoveries on the properties, applications, and synthesis of BNNTs are discussed. In particular, we focus on low-temperature and patterned growth, and mass production of BNNTs, since these are the major challenges that have hindered investigation of the properties and application of BNNTs for the past decade. Finally, perspectives of future research on BNNTs are discussed.


Assuntos
Materiais Biocompatíveis/química , Compostos de Boro/química , Nanotecnologia/métodos , Nanotubos/química , Catálise , Sistemas de Liberação de Medicamentos , Eletroquímica/métodos , Humanos , Lasers , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/química , Polímeros/química
10.
Rev Sci Instrum ; 81(4): 043909, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20441352

RESUMO

Boron-doped nanographite ensembles (NGEs) are interesting thermoelectric nanomaterials for high temperature applications. Rapid induction annealing and quenching has been applied to boron-doped NGEs using a relatively low-cost, highly reliable, laboratory built furnace to show that substantial improvements in thermoelectric power factors can be achieved using this methodology. Details of the design and performance of this compact induction furnace as well as results of the thermoelectric measurements will be reported here.

11.
ACS Appl Mater Interfaces ; 2(1): 104-10, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20356226

RESUMO

Boron nitride nanotubes (BNNTs) are functionalized and solubilized in organic solvents such as chloroform, methylene chloride, and tetrahydrofuran by using conjugated poly(p-phenylene ethynylene)s (PPEs) (polymers A and B) and polythiophene (polymer C) via a noncovalent functionalization approach through strong pi-pi stacking interactions between the conjugated polymers and BNNTs. The functionalization of BNNTs with PPEs enhanced planarization of PPEs with red shifts in both absorbance and emission of the composite materials with reference to free PPEs, whereas the functionalization of BNNTs with polythiophene disrupts the pi-conjugation, resulting in blue shifts in both the absorption and emission of the composite material.


Assuntos
Compostos de Boro/química , Nanotubos/química , Polímeros/química , Tiofenos/química , Nanotubos/ultraestrutura , Tamanho da Partícula
12.
Nanotechnology ; 19(45): 455605, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21832782

RESUMO

Effective growth of multiwalled boron nitride nanotubes (BNNTs) has been obtained by thermal chemical vapor deposition (CVD). This is achieved by a growth vapor trapping approach as guided by the theory of nucleation. Our results enable the growth of BNNTs in a conventional horizontal tube furnace within an hour at 1200 °C. We found that these BNNTs have an absorption band edge of 5.9 eV, approaching that of single h-BN crystals, which are promising for future nanoscale deep-UV light emitting devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...