Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 825791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392174

RESUMO

The mediation of the extracellular matrix is one of the major environmental cues to direct cell migration, such as stiffness-dependent durotaxis and adhesiveness-dependent haptotaxis. In this study, we explore another possible contact guidance: roughness dependent topotaxis. Different from previously reported studies on topotaxis that use standard photolithography to create micron or submicron structures that have identical height and different spatial densities, we develop a new method to programmatically fabricate substrates with different patterns of surface roughness using two-photon polymerization. Surface roughness ranging from 0.29 to 1.11 µm can be created by controlling the voxel distance between adjacently cured ellipsoid voxels. Patterned Ormocomp® masters are transferred to polypropylene films using the nanoimprinting method for cell migration study. Our experimental results suggest that MG63 cells can sense the spatial distribution of their underlying extracellar roughness and modulate their migration velocity and direction. Three characteristic behaviors were identified. First, cells have a higher migration velocity on substrates with higher roughness. Second, cells preferred to migrate from regions of higher roughness to lower roughness, and their migration velocity also decreased with descending roughness. Third, the migration velocity remained unchanged on the lower roughness range on a graded substrate with a steeper roughness. The last cell migration characteristic suggests the steepness of the roughness gradient can be another environmental cue in addition to surface roughness. Finally, the combination of two-photon polymerization and nanoimprint methods could become a new fabrication methodology to create better 3D intricate structures for exploring topotactic cell migrations.

2.
Lab Chip ; 19(17): 2834-2843, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31353372

RESUMO

In this paper, a new type of lab-on-a-chip system, called vacuum pouch microfluidic (VPM) system, is reported. The core of this technology is a thin-film vacuum pouch that provides negative pumping pressure once it is activated. It is a degassed plastic bag that encloses a microfluidic chip. To demonstrate its performance, a passive thin-film micromixer is developed to integrate with the vacuum pouch. Since both the vacuum pouch and the thin-film micromixer are made of plastic film, they can be laminated together to construct a multi-layered microfluidic system. Excluding the storage reservoir, the overall thickness is 0.4 mm and the total weight is 0.3 g. This system provides a simple and straightforward strategy to construct a standalone, portable, flexible and low cost microfluidic system. The thin-film micromixer uses a serpentine channel to perform the mixing process, and it is found to have distinct mixing mechanisms under different Reynolds (Re) numbers, where lateral diffusion dominates for Re < 1 and chaotic mixing starts to contribute for Re > 10. Integrating this thin-film micromixer with the vacuum pouch, it is demonstrated that the negative pumping pressure can be adjusted by different storage reservoirs being placed at the channel exit. Reynolds numbers ranging from 0.0064 to 45.2 can be achieved. It also is verified that the VPM micromixer can be stored for 4 weeks to provide a sufficient flow rate for mixing applications. Finally, to demonstrate the feasibility of applying this VPM-based thin-film micromixer for on-site detection, this system is integrated with the colorimetric method. It is verified that a 10 µl ferrous ion solution and a 10 µl potassium ferricyanide solution can be mixed in 12 seconds, and concentrations of 10 ppm to 1000 ppm can be quantified by analyzing the colorimetric signal in hue values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...