Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38710644

RESUMO

BACKGROUND: Lactic acid bacteria may be used as probiotics to prevent or treat various diseases, and Lactobacillus delbrueckii has an inhibitory effect on the development of atopic diseases. OBJECTIVE: This study explored the effects of L. delbrueckii subsp. lactis strain LDL557 administration on a mouse asthma model resulting from Dermatophoides pteronyssinus (Der p) sensitization and investigated the associated gut microbiota. METHODS: Der p-sensitized and challenged BALB/c mice were orally administered with three different doses of live (low, 107 colony-forming units (CFU); medium, 108 CFU; high, 109 CFU) and heat-killed (109 cells) LDL557 in 200 µL of PBS daily, starting 2 weeks before Der p sensitization and lasting 4 weeks. After the allergen challenge, airway responsiveness to methacholine and the influx of inflammatory cells to the lungs were assessed. The gut microbiome was obtained by sequencing the V3-V4 region of the 16S rRNA gene from mice stool samples. RESULTS: LDL557 in the live (109 CFU) and heat-killed (109 cells) conditions reduced the airway hyper-responsiveness after stimulation with methacholine, inflammatory cell infiltration, and mucus production. These effects were similar to those in groups treated with dexamethasone. No significant change in the gut microbiota was observed after LDL557 treatment, except for the tendency of heat-killed LDL557 to change the gut microbial profile to a greater extent than live LDL557. CONCLUSION: In summary, we found that live and heat-killed LDL557 had the beneficial effect of preventing Der p-induced allergic inflammation in a mouse model of asthma.

2.
Physiol Rep ; 11(19): e15835, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37816697

RESUMO

Consumption of Lactiplantibacillus plantarum TWK10 (TWK10) has beneficial probiotic effects, improves exercise endurance performance, regulates body composition, and mitigates aging-related problems in mice and humans. Here, we investigated the effects of heat-killed TWK10 on exercise endurance performance, muscle weight and strength, fatigue, and body composition in a double-blind, placebo-controlled clinical trial. Thirty healthy males aged 20-40 years were assigned to the Control group or heat-killed TWK10 group (TWK10-HK) in a balanced order according to each individual's initial maximal oxygen uptake. After 6-week administration, the exercise endurance time in the TWK10-HK was significantly increased (p = 0.0028) compared with that in the Control group. The grip strength on the right and left hands of the subjects was significantly increased (p = 0.0002 and p = 0.0140, respectively) in the TWK10-HK compared with that in the Control group. Administration of heat-killed TWK10 resulted in a significant increase (p = 0.0275) in muscle weight. After 6-week administration, serum lactate, and ammonia levels were significantly lower in the TWK10-HK group than in the Control group during the exercise and recovery periods. These findings demonstrate that heat-killed TWK10 has significant potential to be used as a postbiotic for humans.


Assuntos
Fadiga , Probióticos , Adulto , Humanos , Masculino , Adulto Jovem , Temperatura Alta , Fadiga Muscular , Músculos
3.
Microorganisms ; 10(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36363775

RESUMO

Lactiplantibacillus plantarum TWK10, a probiotic strain, has been demonstrated to improve exercise performance, regulate body composition, and ameliorate age-related declines. Here, we performed a comparative analysis of viable and heat-killed TWK10 in the regulation of exercise performance, body composition, and gut microbiota in humans. Healthy adults (n = 53) were randomly divided into three groups: Control, TWK10 (viable TWK10, 3 × 1011 colony forming units/day), and TWK10-hk (heat-killed TWK10, 3 × 1011 cells/day) groups. After six-week administration, both the TWK10 and TWK10-hk groups had significantly improved exercise performance and fatigue-associated features and reduced exercise-induced inflammation, compared with controls. Viable TWK10 significantly promoted improved body composition, by increasing muscle mass proportion and reducing fat mass. Gut microbiota analysis demonstrated significantly increasing trends in the relative abundances of Akkermansiaceae and Prevotellaceae in subjects receiving viable TWK10. Predictive metagenomic profiling revealed that heat-killed TWK10 administration significantly enhanced the signaling pathways involved in amino acid metabolisms, while glutathione metabolism, and ubiquinone and other terpenoid-quinone biosynthesis pathways were enriched by viable TWK10. In conclusion, viable and heat-killed TWK10 had similar effects in improving exercise performance and attenuating exercise-induced inflammatory responses as probiotics and postbiotics, respectively. Viable TWK10 was also highly effective in regulating body composition. The differences in efficacy between viable and heat-killed TWK10 may be due to differential impacts in shaping gut microbiota.

5.
Microorganisms ; 10(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456834

RESUMO

Lactiplantibacillus plantarum TWK10 (TWK10), isolated from Taiwanese pickled cabbage, has been demonstrated to exert beneficial probiotic effects in both mice and humans. Here, we comprehensively assessed the safety of TWK10 using both in vivo and in vitro approaches, including whole-genome sequence analysis, an assessment of hemolytic activity, and performing an antimicrobial susceptibility test, the Ames bacterial reverse mutation assay, the chromosomal aberration test, a rodent peripheral blood micronucleus test, and the 28-day subacute oral toxicity assay. The results showed that there was no significant increase in the incidence of reverse mutations or chromosomal aberrations following exposure to TWK10. Moreover, no significant changes were detected either in the number of reticulocytes or the incidence of micronuclei in ICR mice, and no subacute toxicity was recorded in SD rats at the oral TWK10 dosage of 2000 mg/kg body weight/day repeated for 28 days. Additionally, TWK10 exhibited no hemolytic activity and was susceptible to all the antibiotics tested, except kanamycin. However, no antimicrobial resistance genes, virulence factors, or genes involved in biogenic amine synthesis were found in the genome of TWK10. Our findings demonstrated that TWK10 has high potential of being safe for human consumption as a probiotic.

6.
Front Nutr ; 8: 708096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722603

RESUMO

In humans, aging is characterized by the progressive decline in biological, physiological, and psychological functions, and is a major risk factor in the development of chronic diseases. Therefore, the development of strategies aimed at attenuating aging-related disorders and promoting healthy aging is critical. In a previous study, we have demonstrated that Lactobacillus plantarum TWK10 (TWK10), a probiotic strain isolated from Taiwanese pickled cabbage, improved muscle strength, exercise endurance, and overall body composition in healthy humans. In this study, the effect of TWK10 on the progression of age-related impairments was investigated in mice. We found that TWK10 not only enhanced muscle strength in young mice, but also prevented the aging-related loss of muscle strength in aged mice, which was accompanied by elevated muscle glycogen levels. Furthermore, TWK10 attenuated the aging-associated decline in learning and memory abilities, as well as bone mass. Further analyses of gut microbiota using next-generation sequencing (NGS) of the 16S rRNA gene showed that the pattern of gut microbial composition was clearly altered following 8 weeks of TWK10 administration. TWK10-treated mice also experienced an increase in short-chain fatty acid (SCFA)-producing bacteria and higher overall levels of gut SCFA. Furthermore, TWK10 administration to some extent reversed the aging-associated accumulation of pathogenic bacterial taxa. In conclusion, TWK10 could be viewed as a potential therapeutic agent that attenuates aging-related disorders and provides health benefits by modulating the imbalance of gut microbiota.

7.
Microorganisms ; 9(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34361902

RESUMO

Sarcopenia is a condition in which there is a loss of muscle caused by aging and it is one of the most significant factors that affects physical fragility. In recent years, the role of the gut-muscle axis has garnered attention as, along with the gut microbiota, it potentially plays a significant role in muscle regeneration, in addition to nutritional supplements and exercise training. Past studies have found that supplementation with Lactobacillus plantarum TWK10 could effectively increase the muscle mass of animals or adult humans. Therefore, in this study, we investigated whether the supplementation of L. plantarum TWK10 produces increased muscle mass and improves the functional performance of elderly persons with mild fragility. A total of 68 elderly subjects were recruited, of which 13 subjects were excluded or withdrew from the study. We adopted a double-blind design, and the 55 subjects were randomly divided into three groups: the placebo group, the TWK10 low-dose group (2 × 1010 CFU/day) (TWK10-L), and the TWK10 high-dose group (6 × 1010 colony-forming unit (CFU)/day) (TWK10-H). For 18 weeks, all subjects were required to regularly take experimental samples, perform functional activity testing, and have their body composition analyzed before the study and every six weeks after the intervention. Finally, 17 subjects in the placebo group, 12 subjects in the TWK10-L group, and 13 subjects in the TWK10-H group finished the study. It was found that supplementation with TWK10 had a tendency to increase and improve muscle mass, left hand grip strength, lower limb muscle strength, and gait speed and balance after the sixth week, especially in the TWK10-H group, and, as the supplement time was longer up to the 18th week, it had an even greater effect (p < 0.05). In conclusion, consecutive supplementation of L. plantarum TWK10 for more than six weeks could effectively improve the muscle strength and endurance of the elderly, reducing sarcopenia and physical fragility. This trial was registered as NCT04893746.

8.
Metabolites ; 11(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669119

RESUMO

Kefir is an acidic, carbonated, and fermented dairy product produced by fermenting milk with kefir grains. The Lactobacillus species constitutes an important part of kefir grains. In a previous animal study, kefir effectively improved exercise performance and had anti-fatigue effects. The purpose of this research was to explore the benefits of applying kefir to improve exercise performance, reduce fatigue, and improve physiological adaptability in humans. The test used a double-blind crossover design and supplementation for 28 days. Sixteen 20-30 year-old subjects were divided into two groups in a balanced order according to each individual's initial maximal oxygen uptake and were assigned to receive a placebo (equal flavor, equal calories, 20 g/day) or SYNKEFIR™ (20 g/day) every morning. After the intervention, there were 28 days of wash-out, during which time the subjects did not receive further interventions. After supplementation with SYNKEFIR™, the exercise time to exhaustion was significantly greater than that before ingestion (p = 0.0001) and higher than that in the Placebo group by 1.29-fold (p = 0.0004). In addition, compared with the Placebo group, the SYNKEFIR™ administration group had significantly lower lactate levels in the exercise and recovery (p < 0.05). However, no significant difference was observed in the changes in the gut microbiota. Although no significant changes in body composition were found, SYNKEFIR™ did not cause adverse reactions or harm to the participants' bodies. In summary, 28 days of supplementation with SYNKEFIR™ significantly improved exercise performance, reduced the production of lactic acid after exercise, and accelerated recovery while also not causing any adverse reactions.

9.
Nutrients ; 11(11)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752370

RESUMO

Probiotics have been rapidly developed for health promotion, but clinical validation of the effects on exercise physiology has been limited. In a previous study, Lactobacillus plantarum TWK10 (TWK10), isolated from Taiwanese pickled cabbage as a probiotic, was demonstrated to improve exercise performance in an animal model. Thus, in the current study, we attempted to further validate the physiological function and benefits through clinical trials for the purpose of translational research. The study was designed as a double-blind placebo-controlled experiment. A total of 54 healthy participants (27 men and 27 women) aged 20-30 years without professional athletic training were enrolled and randomly allocated to the placebo, low (3 × 1010 colony forming units (CFU)), and high dose (9 × 1010 CFU) TWK10 administration groups (n = 18 per group, with equal sexes). The functional and physiological assessments were conducted by exhaustive treadmill exercise measurements (85% VO2max), and related biochemical indices were measured before and after six weeks of administration. Fatigue-associated indices, including lactic acid, blood ammonia, blood glucose, and creatinine kinase, were continuously monitored during 30 min of exercise and a 90 min rest period using fixed intensity exercise challenges (60% VO2max) to understand the physiological adaptation. The systemic inflammation and body compositions were also acquired and analyzed during the experimental process. The results showed that TWK10 significantly elevated the exercise performance in a dose-dependent manner and improved the fatigue-associated features correlated with better physiological adaptation. The change in body composition shifted in the healthy direction for TWK10 administration groups, especially for the high TWK10 dose group, which showed that body fat significantly decreased and muscle mass significantly increased. Taken together, our results suggest that TWK10 has the potential to be an ergogenic aid to improve aerobic endurance performance via physiological adaptation effects.


Assuntos
Composição Corporal , Tolerância ao Exercício , Exercício Físico , Microbioma Gastrointestinal , Lactobacillus plantarum/crescimento & desenvolvimento , Aptidão Física , Probióticos/administração & dosagem , Adaptação Fisiológica , Adulto , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Masculino , Taiwan , Fatores de Tempo , Adulto Jovem
10.
AMB Express ; 9(1): 163, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31605256

RESUMO

Wound healing is a highly dynamic phenomenon comprising numerous coordinated steps including homeostasis/coagulation, inflammation, migration, proliferation, and remodeling. Diabetes mellitus (DM) is a multisystem chronic epidemic that prolongs inflammation in wounds and is associated with impaired healing. This study aimed to investigate the effect of an ethanol extract from Lactobacillus plantarum TWK10 (TWK10)-fermented soymilk on wound healing. The anti-inflammatory effects of the ethanol extract of TWK10-fermented soymilk on lipopolysaccharide-stimulated RAW264.7 macrophage cells were examined. The ethanol extract of TWK10-fermented soymilk (100 µg/mL) significantly decreased nitric oxide production from 11.34 ± 0.74 µM to 8.24 ± 2.02 µM (p < 0.05) and enhanced proliferation in Detroit 551 cells cultured in high-glucose medium; the cell number peaked at 128.44 ± 7.67% (compared to the untreated control) at 600 µg/mL. An ethanol extract of TWK10-fermented soymilk + vaseline-treated rat model of streptozotocin-induced diabetic wounds was generated herein, and the following groups were formed herein: normal control (NC), blank control (BC), low dose group (LD, 0.24 mg/wound), intermediate dose (MD, 0.48 mg/wound), and high dose (HD, 2.40 mg/wound). On day 14 after wound infliction, the wound area in the LD, MD, and HD groups was significantly decreased to 10.2, 8.4, and 8.5% respectively (p < 0.05). Moreover, in the LD, MD, and, HD groups, tumor necrosis factor-α, interleukin 6, and matrix metalloproteinase-9 were downregulated in the wounded skin. These results show that the topical application of the ethanol extract of TWK10-fermented soymilk is beneficial for enhancing wound healing and for the closure of diabetic wounds.

11.
Mol Neurobiol ; 55(12): 8936-8952, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29616397

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment and synaptic dysfunction. Adenosine is an important homeostatic modulator that controls the bioenergetic network in the brain through regulating receptor-evoked signaling pathways, bioenergetic machineries, and epigenetic-mediated gene regulation. Equilibrative nucleoside transporter 1 (ENT1) is a major adenosine transporter that recycles adenosine from the extracellular space. In the present study, we report that a small adenosine analogue (designated J4) that inhibited ENT1 prevented the decline in spatial memory in an AD mouse model (APP/PS1). Electrophysiological and biochemical analyses further demonstrated that chronic treatment with J4 normalized the impaired basal synaptic transmission and long-term potentiation (LTP) at Schaffer collateral synapses as well as the aberrant expression of synaptic proteins (e.g., NR2A and NR2B), abnormal neuronal plasticity-related signaling pathways (e.g., PKA and GSK3ß), and detrimental elevation in astrocytic A2AR expression in the hippocampus and cortex of APP/PS1 mice. In conclusion, our findings suggest that modulation of adenosine homeostasis by J4 is beneficial in a mouse model of AD. Our study provides a potential therapeutic strategy to delay the progression of AD.


Assuntos
Adenosina/uso terapêutico , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal , Presenilina-1/metabolismo , Adenosina/farmacologia , Doença de Alzheimer/patologia , Animais , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia , Receptor A2A de Adenosina/metabolismo , Transmissão Sináptica/efeitos dos fármacos
12.
Cell Biosci ; 5: 52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26357532

RESUMO

BACKGROUND: Deamination of adenine can occur spontaneously under physiological conditions generating the highly mutagenic lesion, hypoxanthine. This process is enhanced by ROS from exposure of DNA to ionizing radiation, UV light, nitrous acid, or heat. Hypoxanthine in DNA can pair with cytosine which results in A:T to G:C transition mutations after DNA replication. In Escherichia coli, deoxyinosine (hypoxanthine deoxyribonucleotide, dI) is removed through an alternative excision repair pathway initiated by endonuclease V. However, the correction of dI in mammalian cells appears more complex and was not fully understood. RESULTS: All four possible dI-containing heteroduplex DNAs, including A-I, C-I, G-I, and T-I were introduced to repair reactions containing extracts from human cells. The repair reaction requires magnesium, dNTPs, and ATP as cofactors. We found G-I was the best substrate followed by T-I, A-I and C-I, respectively. Moreover, judging from the repair requirements and sensitivity to specific polymerase inhibitors, there were overlapping repair activities in processing of dI in DNA. Indeed, a hereditable non-polyposis colorectal cancer cell line (HCT116) demonstrated lower dI repair activity that was partially attributed to lack of mismatch repair. CONCLUSIONS: A plasmid-based convenient and non-radioisotopic method was created to study dI repair in human cells. Mutagenic dI lesions processed in vitro can be scored by restriction enzyme cleavage to evaluate the repair. The repair assay described in this study provides a good platform for further investigation of human repair pathways involved in dI processing and their biological significance in mutation prevention.

13.
PLoS Biol ; 12(3): e1001803, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24594808

RESUMO

DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3' end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminated base in an inosine-containing heteroduplex DNA. Crystal structure analyses further reveal how RNase T recognizes the bulge DNA by inserting a phenylalanine into the bulge, and as a result the 3' end of blunt-end bulge DNA can be digested by RNase T. In contrast, the homodimeric RNase T interacts with the Y-structured DNA by a different binding mode via a single protomer so that the 3' overhang of the Y-structured DNA can be trimmed closely to the duplex region. Our data suggest that RNase T likely processes bulge and bubble DNA in the Endonuclease V-dependent DNA repair, whereas it processes Y-structured DNA in UV-induced and various other DNA repair pathways. This study thus provides mechanistic insights for RNase T and thousands of DnaQ-like exonucleases in DNA 3'-end processing.


Assuntos
Reparo do DNA/fisiologia , DNA/metabolismo , Exorribonucleases/fisiologia , Região 3'-Flanqueadora , Cristalografia por Raios X , DNA/química , Exorribonucleases/química , Exorribonucleases/genética , Modelos Genéticos , Conformação de Ácido Nucleico
14.
DNA Repair (Amst) ; 12(11): 899-911, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24012058

RESUMO

Deamination of adenine can occur spontaneously under physiological conditions, and is enhanced by exposure of DNA to ionizing radiation, UV light, nitrous acid, or heat, generating the highly mutagenic lesion of deoxyinosine in DNA. Such DNA lesions tends to generate A:T to G:C transition mutations if unrepaired. In Escherichia coli, deoxyinosine is primarily removed through a repair pathway initiated by endonuclease V (endo V). In this study, we compared the repair of three mutagenic deoxyinosine lesions of A-I, G-I, and T-I using E. coli cell-free extracts as well as reconstituted protein system. We found that 3'-5' exonuclease activity of DNA polymerase I (pol I) was very important for processing all deoxyinosine lesions. To understand the nature of pol I in removing damaged nucleotides, we systemically analyzed its proofreading to 12 possible mismatches 3'-penultimate of a nick, a configuration that represents a repair intermediate generated by endo V. The results showed all mismatches as well as deoxyinosine at the 3' penultimate site were corrected with similar efficiency. This study strongly supports for the idea that the 3'-5' exonuclease activity of E. coli pol I is the primary exonuclease activity for removing 3'-penultimate deoxyinosines derived from endo V nicking reaction.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Polimerase I/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Quebras de DNA de Cadeia Simples , DNA Ligases/metabolismo , Desaminação , Desoxirribonuclease (Dímero de Pirimidina)/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Inosina/análogos & derivados , Inosina/metabolismo , Mutação , Especificidade por Substrato
15.
DNA Repair (Amst) ; 9(10): 1073-9, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20696623

RESUMO

Deoxyinosine (dI) in DNA can arise from hydrolytic or nitrosative deamination of deoxyadenosine. It is excised in a repair pathway that is initiated by endonuclease V, the nfi gene product, in Escherichia coli. Repair was studied in vitro using M13mp18 derived heteroduplexes containing a site-specific deoxyinosine. Unpaired dI/G mismatch resides within the recognition site for XhoI restriction endonucleases, permitting evaluation of repair occurring on deoxyinosine-containing DNA strand. Our results show that dI lesions were efficiently repaired in nfi(+)E. coli extracts but the repair level was much reduced in nfi mutant extracts. We subjected the deoxyinosine-containing heteroduplex to a purified system consisting of soluble endonuclease V fusion protein, DNA polymerase I, and DNA ligase, along with the four deoxynucleoside triphosphates. Interestingly we found these three proteins alone are sufficient to process the dI lesion efficiently. We also found that the 3'-exonuclease activity of DNA polymerase I is sufficient to remove the dI lesion in this minimum reconstituted assay.


Assuntos
Reparo de Erro de Pareamento de DNA , Reparo do DNA , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Inosina/análogos & derivados , DNA Ligases/metabolismo , DNA Polimerase I/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desaminação , Escherichia coli/genética , Escherichia coli/metabolismo , Inosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...