Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(4): 4600-4612, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313538

RESUMO

Multifunctional nanocomposites have shown great interest in clean energy systems and environmental applications in recent years. Herein, we first reported the synthesis of Dy2NiMnO6 (DNMO)/reduced graphene oxide (rGO) nanocomposites utilizing a hybrid approach involving sol-gel and solvothermal processes. Subsequently, we investigated these nanocomposites for their applications in catalysis, electromagnetic interference shielding, and supercapacitors. A morphological study suggests spherical-shaped DNMO nanoparticles of an average size of 382 nm that are uniformly distributed throughout the surface without any agglomeration. The as-prepared nanocomposites were used as catalysts to investigate the catalytic reduction of 4-nitrophenol in the presence of NaBH4. DNMO/rGO nanocomposites demonstrate superior catalytic activity when compared with bare DNMO, with the rate of reduction being influenced by the composition of the DNMO/rGO nanocomposites. In addition, novel multifunctional DNMO/rGO was incorporated into polyvinylidene difluoride (PVDF) to develop a flexible nanocomposite for electromagnetic shielding applications and exhibited a shielding effectiveness of 6 dB with 75% attenuation at a frequency of 8.5 GHz compared to bare PVDF and PVDF-DNMO nanocomposite. Furthermore, the electrochemical performance of DNMO/rGO nanocomposites was investigated as an electrode material for supercapacitors, exhibiting the highest specific capacitance of 260 F/g at 1 A/g. These findings provide valuable insights into the design of DNMO/rGO nanocomposites with remarkable performance in sustainable energy and environmental applications.

2.
RSC Adv ; 14(2): 1284-1303, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174250

RESUMO

Graphene, the most fascinating 2D form of carbon with closely packed carbon atoms arranged in a layer, needs more attention in various fields. For its unique electrical, mechanical, and chemical properties with a large surface area, graphene has been in the limelight since its first report. Graphene has extraordinary properties, making it the most promising electrode component for applications in supercapacitors. However, the persistent re-stacking of carbon layers in graphene, caused by firm interlayer van der Waals attractions, significantly impairs the performance of supercapacitors. As a result, many strategies have been used to get around the aforementioned problems. The utilization of graphene-based nanomaterials has been implemented to surmount the aforementioned constraints and considerably enhance the performance of supercapacitors. This review highlights recent progress in graphene-based nanomaterials with metal oxide, sulfides, phosphides, nitrides, carbides, and conducting polymers, focusing on their synthetic approach, configurations, and electrochemical properties for supercapacitors. It discusses new possibilities that could increase the performance of next-generation supercapacitors.

3.
Nanoscale Adv ; 5(12): 3146-3176, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37325524

RESUMO

Supercapacitors have gained significant attention owing to their exceptional performance in terms of energy density and power density, making them suitable for various applications, such as mobile devices, electric vehicles, and renewable energy storage systems. This review focuses on recent advancements in the utilization of 0-dimensional to 3-dimensional carbon network materials as electrode materials for high-performance supercapacitor devices. This study aims to provide a comprehensive evaluation of the potential of carbon-based materials in enhancing the electrochemical performance of supercapacitors. The combination of these materials with other cutting-edge materials, such as Transition Metal Dichalcogenides (TMDs), MXenes, Layered Double Hydroxides (LDHs), graphitic carbon nitride (g-C3N4), Metal-Organic Frameworks (MOFs), Black Phosphorus (BP), and perovskite nanoarchitectures, has been extensively studied to achieve a wide operating potential window. The combination of these materials synchronizes their different charge-storage mechanisms to attain practical and realistic applications. The findings of this review indicate that hybrid composite electrodes with 3D structures exhibit the best potential in terms of overall electrochemical performance. However, this field faces several challenges and promising research directions. This study aimed to highlight these challenges and provide insights into the potential of carbon-based materials in supercapacitor applications.

4.
Nanotechnology ; 34(28)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37019102

RESUMO

The performance of supercapacitors strongly depends on the electrochemical characterizations of electrode materials. Herein, a composite material consisted of iron(III) oxide (Fe2O3) and multilayer graphene-wrapped copper nanoparticles (Fe2O3/MLG-Cu NPs) is fabricated on a flexible carbon cloth (CC) substrate via two-step synthesis process for supercapacitor application. Where, MLG-Cu NPs are prepared on CC by one-step chemical vapor deposition synthesis approach; thereafter, the Fe2O3is further deposited on the MLG-Cu NPs/CC via successive ionic layer adsorption and reaction method. The related material characterizations of Fe2O3/MLG-Cu NPs are well investigated by scanning electron microscopic, high resolution transmission electron microscopy), Raman spectrometer and X-ray photoelectron spectroscopy; the electrochemical behaviors of the pertinent electrodes are studied by cyclic voltammogram, galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy measurements. The flexible electrode with Fe2O3/MLG-Cu NPs composites exhibits the best specific capacitance of 1092.6 mF cm-2at 1 A g-1, which is much higher than those of electrodes with Fe2O3(863.7 mF cm-2), MLG-Cu NPs (257.4 mF cm-2), multilayer graphene hollow balls (MLGHBs, 14.4 mF cm-2) and Fe2O3/MLGHBs (287.2 mF cm-2). Fe2O3/MLG-Cu NPs electrode also exhibits an excellent GCD durability, and its capacitance remains 88% of its original value after 5000 cycles of the GCD process. Finally, a supercapacitor system consisted of four Fe2O3/MLG-Cu NPs/CC electrodes can efficiently power various light-emitting diodes (i.e. red, yellow, green, and blue lights), demonstrating the practical application of Fe2O3/MLG-Cu NPs/CC electrode.

5.
Nanotechnology ; 34(12)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36542854

RESUMO

The performance of supercapacitors strongly depends on the electrochemical characterizations of electrode materials. Herein, a composite material consisted of polypyrrole (PPy) and multilayer graphene-wrapped copper nanoparticles (PPy/MLG-Cu NPs) is fabricated on a flexible carbon cloth (CC) substrate via two-step synthesis process for supercapacitor application. Where, MLG-Cu NPs are prepared on CC by one-step chemical vapor deposition synthesis approach; thereafter, the PPy is further deposited on the MLG-Cu NPs/CC via electropolymerization. The related material characterizations of PPy/MLG-Cu NPs are well investigated by scanning electron microscopic, high resolution transmission electron microscopy, Raman spectrometer and x-ray photoelectron spectroscopy; the electrochemical behaviors of the pertinent electrodes are studied by cyclic voltammogram, galvanostatic charge/discharge and electrochemical impedance spectroscopy measurements. The flexible electrode with PPy/MLG-Cu NPs composites exhibits the best specific capacitance of 845.38 F g-1at 1 A g-1, which is much higher than those of electrodes with PPy (214.30 F g-1), MLG-Cu NPs (6.34 F g-1), multilayer graphene hollow balls (MLGHBs; 52.72 F g-1), and PPy/MLGHBs (237.84 F g-1). Finally, a supercapacitor system consisted of four PPy/MLG-Cu NPs/CC electrodes can efficiently power various light-emitting diodes (i.e. red, yellow, green and blue lighs), demonstrating the practical application of PPy/MLG-Cu NPs/CC electrode.

6.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500618

RESUMO

Since Prof. Grätzel and co-workers achieved breakthrough progress on dye-sensitized solar cells (DSSCs) in 1991, DSSCs have been extensively investigated and wildly developed as a potential renewable power source in the last two decades due to their low cost, low energy-intensive processing, and high roll-to-roll compatibility. During this period, the highest efficiency recorded for DSSC under ideal solar light (AM 1.5G, 100 mW cm-2) has increased from ~7% to ~14.3%. For the practical use of solar cells, the performance of photovoltaic devices in several conditions with weak light irradiation (e.g., indoor) or various light incident angles are also an important item. Accordingly, DSSCs exhibit high competitiveness in solar cell markets because their performances are less affected by the light intensity and are less sensitive to the light incident angle. However, the most used catalyst in the counter electrode (CE) of a typical DSSC is platinum (Pt), which is an expensive noble metal and is rare on earth. To further reduce the cost of the fabrication of DSSCs on the industrial scale, it is better to develop Pt-free electro-catalysts for the CEs of DSSCs, such as transition metallic compounds, conducting polymers, carbonaceous materials, and their composites. In this article, we will provide a short review on the Pt-free electro-catalyst CEs of DSSCs with superior cell compared to Pt CEs; additionally, those selected reports were published within the past 5 years.

7.
Materials (Basel) ; 14(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443037

RESUMO

A cobalt oxide (Co3O4)-decorated silicon carbide (SiC) nano-tree array (denoted as Co3O4/SiC NTA) electrode is synthesized, and it is investigated for use in micro-supercapacitor applications. Firstly, the well-standing SiC nanowires (NWs) are prepared by nickel (Ni)-catalyzed chemical vapor deposition (CVD) method, and then the thin layer of Co3O4 and the hierarchical Co3O4 nano-flower-clusters are, respectively, fabricated on the side-walls and the top side of the SiC NWs via electrodeposition. The deposition of Co3O4 on the SiC NWs benefits the charge transfer at the electrode/aqueous electrolyte interface due to its extremely hydrophilic surface characteristic after Co3O4 decoration. Furthermore, the Co3O4/SiC NTA electrode provides a directional charge transport route along the length of SiC nanowires owing to their well-standing architecture. By using the Co3O4/SiC NTA electrode for micro-supercapacitor application, the areal capacitance obtained from cyclic voltammetry measurement reaches 845 mF cm-2 at a 10 mV s-1 scan rate. Finally, the capacitance durability is also evaluated by the cycling test of cyclic voltammetry at a high scan rate of 150 mV s-1 for 2000 cycles, exhibiting excellent stability.

8.
ACS Appl Mater Interfaces ; 12(36): 40426-40432, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32790275

RESUMO

The formation of thin and uniform capacitive layers for fully interacting with an electrolyte in a supercapacitor is a key challenge to achieve optimal capacitance. Here, we demonstrate a binder-free and flexible supercapacitor with the electrode made of cobalt oxide nanoparticle (CoO NP)-wrapped graphene hollow nanoballs (GHBs). The growth process of Co(OH)2 NPs, which could subsequently be thermally annealed to CoO NPs, was monitored by in situ electrochemical liquid transmission electron microscopy (TEM). In the dynamic growth of Co(OH)2 NPs on a film of GHBs, the lateral formation of fan-shaped clusters of Co(OH)2 NPs spread over the surface of GHBs was observed by in situ TEM. This CoO-GHBs/CC electrode exhibits high specific capacitance (2238 F g-1 at 1 A g-1) and good rate capability (1170 F g-1 at 15 A g-1). The outstanding capacitive performance and good rate capability of the CoO-GHBs/CC electrode were achieved by the synergistic combination of highly pseudocapacitive CoO and electrically conductive GHBs with large surface areas. A solid-state symmetric supercapacitor (SSC), with CoO-GHBs/CCs used for both positive and negative electrodes, exhibits high power density (6000 W kg-1 at 8.2 Wh kg-1), high energy density (16 Wh kg-1 at 800 W kg-1), cycling stability (∼100% capacitance retention after 5000 cycles), and excellent mechanical flexibility at various bending positions. Finally, a serial connection of four SSC devices can efficiently power a red light-emitting diode after being charged for 20 s, demonstrating the practical application of this CoO-GHBs/CC-based SSC device for efficient energy storage.

9.
ACS Appl Mater Interfaces ; 12(31): 34815-34824, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32657118

RESUMO

Novel polymorphic MoxW1-xTe2-based counter electrodes possess high carrier mobility, phase-dependent lattice distortion, and surface charge density wave to boost the charge-transfer kinetics and electrocatalytic activity in dye-sensitized solar cells (DSSCs). Here, we report the syntheses of stoichiometry-controlled binary and ternary MoxW1-xTe2 nanowhiskers directly on carbon cloth (CC), denoted by MoxW1-xTe2/CC, with an atmospheric chemical vapor deposition technique. The synthesized MoxW1-xTe2/CC samples, including 1T'-MoTe2/CC, Td-WTe2/CC, Td-Mo0.26W0.73Te2.01/CC, and 1T'- & Td-Mo0.66W0.32Te2.02/CC, were then employed as different counter electrodes to study their electrochemical activities and efficiencies in DSSCs. The photovoltaic parameter analysis manifests that MoxW1-xTe2/CCs are more stable than a standard Pt/CC in the I-/I3- electrolyte examined by cyclic voltammetry over 100 cycles. A 1T'- & Td-Mo0.66W0.32Te2.02/CC-based DSSC can achieve a photocurrent density of 16.29 mA cm-2, a maximum incident photon-to-electron conversion efficiency of 90% at 550 nm excitation, and an efficiency of 9.40%, as compared with 8.93% of the Pt/CC counterpart. Moreover, the 1T'- & Td-Mo0.66W0.32Te2.02/CC shows lower charge-transfer resistance (0.62 Ω cm2) than a standard Pt/CC (1.19 Ω cm2) in electrocatalytic reactions. Notably, MoxW1-xTe2 nanowhiskers act as an electron expressway by shortening the path of carrier transportation in the axial direction from a counter electrode to electrolytic ions to enhance the reaction kinetics in DSSCs. This work demonstrates that the nanowhisker-structured 1T'- & Td-Mo0.66W0.32Te2.02/CC with high carrier mobility and robust surface states can serve as a highly efficient counter electrode in DSSCs to replace the conventional Pt counter electrode for electrocatalytic applications.

10.
ACS Appl Mater Interfaces ; 9(30): 25067-25072, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28727411

RESUMO

In this study, we report a novel, one-step synthesis method to fabricate multilayer graphene (MLG)-wrapped copper nanoparticles (CuNPs) directly on various substrates (e.g., polyimide film (PI), carbon cloth (CC), or Si wafer (Si)). The electrical resistivities of the pristine MLG-CuNPs/PI and MLG-CuNPs/Si were measured 1.7 × 10-6 and 1.4 × 10-6 Ω·m, respectively, of which both values are ∼100-fold lower than earlier reports. The MLG shell could remarkably prevent the Cu nanocore from serious damages after MLG-CuNPs being exposed to various harsh conditions. Both MLG-CuNPs/PI and MLG-CuNPs/Si retained almost their conductivities after ambient annealing at 150 °C. Furthermore, the flexible MLG-CuNPs/PI exhibits excellent mechanical durability after 1000 bending cycles. We also demonstrate that the MLG-CuNPs/PI can be used as promising source-drain electrodes in fabricating flexible graphene-based field-effect transistor (G-FET) devices. Finally, the MLG-CuNPs/CC was shown to possess high performance and durability toward hydrogen evolution reaction (HER).

11.
ACS Appl Mater Interfaces ; 8(24): 15267-78, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27248206

RESUMO

A polymeric ionic liquid, poly(oxyethylene)-imide-imidazolium selenocyanate (POEI-IS), was newly synthesized and used for a multifunctional gel electrolyte in a quasi-solid-state dye-sensitized solar cell (QSS-DSSC). POEI-IS has several functions: (a) acts as a gelling agent for the electrolyte of the DSSC, (b) possesses a redox mediator of SeCN(-), which is aimed to form a SeCN(-)/(SeCN)3(-) redox couple with a more positive redox potential than that of traditional I(-)/I3(-), (c) chelates the potassium cations through the lone pair electrons of the oxygen atoms of its poly(oxyethylene)-imide-imidazolium (POEI-I) segments, and (d) obstructs the recombination of photoinjected electrons with (SeCN)3(-) ions in the electrolyte through its POEI-I segments. Thus, the POEI-IS renders a high open-circuit voltage (VOC) to the QSS-DSSC due to its functions of b-d and prolongs the stability of the cell due to its function of a. The QSS-DSSC with the gel electrolyte containing 30 wt % of the POEI-IS in liquid selenocyanate electrolyte exhibited a high VOC of 825.50 ± 3.51 mV and a high power conversion efficiency (η) of 8.18 ± 0.02%. The QSS-DSSC with 30 wt % POEI-IS retained up to 95% of its initial η after an at-rest stability test with the period of more than 1,000 h.

12.
ChemSusChem ; 8(7): 1244-53, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25772944

RESUMO

A novel ionic-liquid mediator, 1-butyl-3-{2-oxo-2-[(2,2,6,6-tetramethylpiperidin-4-yl)amino]ethyl}-1H-imidazol-3-ium selenocyanate (ITSeCN), has been successfully synthesized for dye-sensitized solar cells (DSSCs). ITSeCN possesses dual redox channels, imidazolium-functionalized 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) and selenocyanate, which can serve as the cationic redox mediator and the anionic redox mediator, respectively. Therefore, ITSeCN has a favorable redox nature, which results in a more positive standard potential, larger diffusivity, and better kinetic heterogeneous rate constant than those of iodide. The DSSC with the ITSeCN electrolyte shows an efficiency of 8.38 % with a high open-current voltage (VOC ) of 854.3 mV, and this VOC value is about 150 mV higher than that for the iodide-based DSSC. Moreover, different electrocatalytic materials were employed to trigger the redox reaction of ITSeCN. The ITSeCN-based DSSC with the CoSe counter electrode achieved the best performance of 9.01 %, which suggested that transition-metal compound-type materials would be suitable for our newly synthesized ITSeCN mediator.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Líquidos Iônicos/química , Energia Solar , Óxidos N-Cíclicos/química , Eletroquímica , Eletrodos , Imidazóis/química , Cinética , Oxirredução , Rotação , Propriedades de Superfície
13.
ACS Appl Mater Interfaces ; 7(4): 2249-62, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25557120

RESUMO

Two types of fluorene-based organic dyes featuring T-shape/rod-shape molecular configuration with phenothiazine donor and cyanoacrylic acid acceptor have been synthesized and characterized as sensitizers for dye-sensitized solar cells. Phenothiazine is functionalized at either nitrogen (N10) or carbon (C3) to obtain T-shape and rod-like organic dyes, respectively. The effect of structural alternation on the optical, electrochemical, and the photovoltaic properties is investigated. The crystal structure determination of the dye containing phenyl linker revealed cofacial slip-stack columnar packing of the molecules. The trends in the optical properties of the dyes are interpreted using time-dependent density functional theory (TDDFT) computations. The rod-shaped dyes exhibited longer wavelength absorption and low oxidation potentials when compared to the corresponding T-shaped dyes attributable to the favorable electronic overlap between the phenothiazine unit and the rest of the molecule in the former dyes. However, the T-shaped dyes showed better photovoltaic properties due to the lowest unoccupied molecular orbital (LUMO) energy level favorable for electron injection into the conduction band of TiO2 and appropriate orientation of the phenothiazine unit rendering effective surface blocking to suppress the recombination of electrons between the electrolyte I3(-) and TiO2. The electrochemical impedance spectroscopy investigations provide further support for the variations in the electron injection and transfer kinetics due to the structural modifications.

14.
Chemistry ; 20(32): 10052-64, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25042065

RESUMO

The high performances of dye-sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon-to-electron conversion efficiencies extends to the onset at the near-infrared region due to strong internal charge-transfer transition as well as the effect of electron-deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their Ru(II) counterparts. Detailed spectroscopic studies have revealed the dye structure-cell performance correlations, to allow future design of efficient light-harvesting organic dyes.

15.
J Org Chem ; 79(7): 3159-72, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24628443

RESUMO

New organic dyes containing fluorene functionalized with two imidazole chromophores as donors and cyanoacrylic acid acceptors have been synthesized and successfully demonstrated as sensitizers in nanocrystalline TiO2-based dye-sensitized solar cells (DSSCs). The monoimidazole analogues were also synthesized for comparison. The Sommelet reaction of bromomethylated 2-bromo-9,9-diethyl-9H-fluorene produced the key precursor 7-bromo-9,9-diethyl-9H-fluorene-2,4-dicarbaldehyde required for the preparation of imidazole-functionalized fluorenes. Since the dyes possess weak donor segment, the electron-richness of the conjugation pathway dictated the optical, electrochemical, and photovoltaic properties of the dyes. The dyes served as sensitizers in DSSC and exhibited moderate efficiency up to 3.44%. The additional imidazole present on the fluorene has been found to retard the electron recombination due to the bulkier hydrophobic environment and led to high open-circuit voltage in the devices.

16.
ACS Appl Mater Interfaces ; 6(4): 2528-39, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24456063

RESUMO

A series of new metal free organic dyes containing carbazole as donor and π-linker have been synthesized and characterized as effective sensitizers for dye sensitized solar cells (DSSCs). The carbazole functionalized at C-2 and C-7 served as electron-rich bridge. The donor property of the carbazole is substantially enhanced on introduction of tert-butyl groups at C-3 and C-6 positions and the oxidation propensity of the dyes increased on insertion of thiophene unit in the conjugation pathway. These structural modifications fine-tuned the optical and electrochemical properties of the dyes. Additionally, the presence of tert-butyl groups on the carbazole nucleus minimized the intermolecular interactions which benefited the performance of DSSCs. The dyes served as efficient sensitizers in DSSCs owing to their promising optical and electrochemical properties. The efficiency of DSSCs utilizing these dyes as sensitizers ranged from 4.22 to 6.04%. The tert-butyl groups were found to suppress the recombination of injected electrons which contributed to the increment in the photocurrent generation (JSC) and open circuit voltage (VOC). A dye with carbazole donor functionalized with tert-butyl groups and the conjugation bridge composed of 2,7-disubstituted carbazole and thiophene fragments exhibited higher VOC value. However, the best device efficiency was observed for a dye with unsubstituted carbazole donor and the π-linker featuring carbazole and bithiophene units due to the high photocurrent generation arising from the facile injection of photogenerated electrons into the conduction band of titanium dioxide (TiO2) facilitated by the low-lying LUMO.

17.
ChemSusChem ; 7(1): 146-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24339350

RESUMO

A new type of ionic liquid that contains a nitroxide radical (N-O(.)) and iodide as two redox couples, JC-IL, has been successfully synthesized for high-performance dye-sensitized solar cells (DSSCs). Both of the redox couples exhibit distinct redox potentials and attractive electrochemical characteristics. The UV/Vis absorption spectra of JC-IL shows a low-intensity peak compared to the strong absorption of I2 in the wavelength region of 350-500 nm. The high open-circuit voltage of DSSCs with JC-IL is over 850 mV, which is approximately 150 mV higher than that of the DSSCs with a standard iodide electrolyte. The dramatic increase in the standard heterogeneous electron-transfer rate constant leads to an increase in the short-circuit current for JC-IL compared to that of 2,2,6,6-tetramethylpiperidin-N-oxyl (TEMPO). DSSCs with the JC-IL electrolyte show promising cell efficiencies if coupled with dyes CR147 (8.12%) or D149 (6.76%). The efficiencies of the DSSCs based on the JC-IL electrolyte are higher than those of DSSCs based on either TEMPO electrolyte or standard iodide electrolyte alone.


Assuntos
Óxidos N-Cíclicos/química , Fontes de Energia Elétrica , Líquidos Iônicos/química , Corantes/química , Iodetos/química , Óxidos de Nitrogênio/química , Oxirredução , Energia Solar
18.
Chem Commun (Camb) ; 48(99): 12071-3, 2012 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-23135310

RESUMO

Dye-sensitized solar cells using nanocrystalline ZnO as the photoanode and a metal-free sensitizer with a benzothiadiazole entity directly connected to the 2-cyanoacrylic acid acceptor exhibited an efficiency (5.18%) higher than those using the TiO(2) photoanode. Use of a hierarchical ZnO back scattering layer further improved the efficiency to 5.82%.


Assuntos
Energia Solar , Tiadiazóis/química , Óxido de Zinco/química , Corantes/química , Eletrodos , Eletrólitos/química , Titânio/química
19.
Chem Asian J ; 7(12): 2942-54, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23023960

RESUMO

Organic dyes that contain a 2,7-diaminofluorene-based donor, a cyanoacrylic-acid acceptor, and various aromatic conjugation segments, which are composed of benzene, fluorene, carbazole, and thiophene units, as a π-bridge have been synthesized and characterized by optical, electrochemical, and theoretical investigations. The trends in the absorption and electrochemical properties of these dyes are in accordance with the electron-donating ability of the conjugating segment. Consequently, the dyes that contained a 2,7-carbazole unit in the π-spacer exhibited red-shifted absorption and lower oxidation potentials than their corresponding fluorene- and phenylene-bridged dyes. However, the enhanced power-conversion efficiency that was exhibited by the fluorene-bridged dyes in the DSSCs was attributed to their broader and intense absorption. Despite the longer-wavelength absorption and reasonable optical density, carbazole-bridged dyes exhibited lower power-conversion efficiencies, which were ascribed to the poor alignment of the LUMO level in these dyes, thereby leading to the inhibition of electron injection into the TiO(2) conduction band.

20.
Chemistry ; 18(38): 12085-95, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22890837

RESUMO

We report here the synthesis and electrochemical and photophysical properties of a series of easily prepared dipolar organic dyes and their application in dye-sensitized solar cells (DSSCs). For the six organic dyes, the molecular structures comprised a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The incorporation of the electron-deficient diphenylquinoxaline moiety effectively reduces the energy gap of the dyes and broadly extends the spectral coverage. DSSCs based on dye 6 produced the best overall cell performance of 7.35 %, which translates to approximately 79 % of the intrinsic efficiency of the DSSCs based on the standard N719 dye under identical experimental conditions. The high performance of DSSCs based on dye 6 among the six dyes explored is attributed to the combined effects of high dye loading on a TiO(2) surface, rapid dye regeneration, and effective retardation of charge recombination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...